Deep learning applications for real-time and early detection of fall armyworm, African armyworm, and maize stem borer

被引:0
作者
Oyege, Ivan [1 ,2 ]
Sibitenda, Harriet [3 ]
Bhaskar, Maruthi Sridhar Balaji [1 ]
机构
[1] Florida Int Univ, Dept Earth & Environm, Miami, FL 33172 USA
[2] Busitema Univ, Dept Chem, POB 236, Tororo, Uganda
[3] Univ Gaston Berger, Dept Comp Sci, BP 234, St Louis, Senegal
来源
MACHINE LEARNING WITH APPLICATIONS | 2024年 / 18卷
关键词
Machine learning; Agriculture; Artificial intelligence; Pest identification; Spodoptera frugiperda; Spodoptera exempta; Busseola fusca; Augmentation; PEST DETECTION; BUSSEOLA-FUSCA; STALK BORER; IDENTIFICATION; CLASSIFICATION; RECOGNITION; NOCTUIDAE; ALGORITHM; YOLOV8; CNN;
D O I
10.1016/j.mlwa.2024.100596
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The application of artificial intelligence for identifying Fall armyworm (Spodoptera frugiperda), African armyworm (Spodoptera exempta), and Maize stem borer (Busseola fusca) is critical due to the threats they pose to global food production. This study aims to evaluate and identify the most accurate and robust DL models in detecting and classifying these three significant agricultural pests. Seven traditional DL models: Convolutional Neural Network, Visual Geometry Group (VGG16), Residual Networks (ResNet50), MobileNetV2, InceptionV3, Deep Neural Network (DNN), and InceptionResNetV2 and the advanced You Look Only Once (YOLOv8) model were trained and tested using pest image datasets. The results showed that all traditional models except DNN had high accuracies ranging from 93.17% (InceptionResNetV2) to 99.43% (MobileNet) in training and testing, with losses ranging from 1.71% (MobileNetV2) to 24.99% (InceptionResNetV2). DNN had a slightly lower accuracy range of 55.27% to 56.39% and a loss range of 85.02% to 89.96% in training and testing. YOLOv8 emerged as the best and most robust model in the pest detection and classification tasks, achieving Precision and Recall scores ranging from 98.4% to 100% on single-class and multi-class classifications, making it highly suitable for realworld pest management applications. This research pioneers the use of DL for the classification and detection of maize stem borer, African armyworm and Fall armyworm, unique and separately addressing a critical gap in agricultural pest management in corn. With early and accurate pest identification, crop protection measures can be implemented efficiently. The findings lead to reduced crop damage and enhanced food security.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] A deep learning based system for real-time detection and sorting of earthworm cocoons
    Celik, Ali
    Uguz, Sinan
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2022, 30 (05) : 1980 - 1994
  • [22] Real-Time Rain Detection and Wiper Control Employing Embedded Deep Learning
    Li, Chih-Hung G.
    Chen, Kuei-Wen
    Lai, Chi-Cheng
    Hwang, Yu-Tang
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (04) : 3256 - 3266
  • [23] Spatiotemporal Anomaly Detection Using Deep Learning for Real-Time Video Surveillance
    Nawaratne, Rashmika
    Alahakoon, Damminda
    De Silva, Daswin
    Yu, Xinghuo
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (01) : 393 - 402
  • [24] Real-Time Polyp Detection, Localization and Segmentation in Colonoscopy Using Deep Learning
    Jha, Debesh
    Ali, Sharib
    Tomar, Nikhil Kumar
    Johansen, Havard D.
    Johansen, Dag
    Rittscher, Jens
    Riegler, Michael A.
    Halvorsen, Pal
    IEEE ACCESS, 2021, 9 : 40496 - 40510
  • [25] Real-Time Psychological Stress Detection According to ECG Using Deep Learning
    Zhang, Pengfei
    Li, Fenghua
    Zhao, Rongjian
    Zhou, Ruishi
    Du, Lidong
    Zhao, Zhan
    Chen, Xianxiang
    Fang, Zhen
    APPLIED SCIENCES-BASEL, 2021, 11 (09):
  • [26] A novel deep facenet framework for real-time face detection based on deep learning model
    B Lakshmanan
    A Vaishnavi
    R Ananthapriya
    A K Aananthalakshmi
    Sādhanā, 48
  • [27] Object Movement Detection by Real-Time Deep Learning for Security Surveillance Camera
    Abhari, Abdolreza
    Banihashemi, Sepideh
    Li, Jason
    PROCEEDINGS 2017 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI), 2017, : 484 - 488
  • [28] A Smart IoT-Cloud Framework with Adaptive Deep Learning for Real-Time Epileptic Seizure Detection
    Hussein, Ahmad MohdAziz
    Alomari, Saleh Ali
    Almomani, Mohammad H.
    Zitar, Raed Abu
    Saleem, Kashif
    Smerat, Aseel
    Nusier, Shawd
    Abualigah, Laith
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2025, 44 (03) : 2113 - 2144
  • [30] Dynamic and Real-Time Object Detection Based on Deep Learning for Home Service Robots
    Ye, Yangqing
    Ma, Xiaolon
    Zhou, Xuanyi
    Bao, Guanjun
    Wan, Weiwei
    Cai, Shibo
    SENSORS, 2023, 23 (23)