The rates in complete moment convergence for negatively associated sequences

被引:0
作者
Zhao Y. [1 ]
Qiu Z. [1 ]
Zhang C. [1 ]
Zhao Y. [1 ]
机构
[1] Department of mathematics, Hangzhou Dianzi University
关键词
Complete moment convergence; Negatively associated sequences; The rates;
D O I
10.1590/S1807-03022010000100003
中图分类号
学科分类号
摘要
Let X1, X2,... be a strictly stationary and negatively associated sequence of random variables with mean zero and positive, finite variance, set Sn = X1 + + Xn, Mn = max1≤k≤n |Sk|. Under appropriate moment conditions, we obtain precise rates in law of the logarithm for the moment convergence of Sn and Mn. © 2010 SBMAC.
引用
收藏
页码:31 / 45
页数:14
相关论文
共 22 条
  • [1] Alam K., Saxena K.M.L., Positive dependence in multivariate distributions, Comm. Statist. A., 10, pp. 1183-1196, (1981)
  • [2] Barlow R.E., Proschan F., Statistical theory of reliability and life testing: Probability Models, (1981)
  • [3] Billingsley P., Convergence of probability measures, (1968)
  • [4] Cox J.T., Grimmett G., Central limit theorems for associated random variables and the percolation model, Ann. Probab., 12, pp. 514-528, (1984)
  • [5] Fu K.A., Zhang L.X., Precise rates in the law of the logarithm for negatively associated random variables, Comput. Math. Appl., 54, pp. 687-698, (2007)
  • [6] Gut A., Spataru A., Precise asymptotics in the Baum-Katz and Davis law of large numbers, J. Math. Anal. Appl., 248, pp. 233-246, (2000)
  • [7] Joag-Dev K., Proschan F., Negative association of random variables with applications, Ann. Statist., 11, pp. 286-295, (1983)
  • [8] Liang H.Y., Complete convergence for weighted sums of negatively associated random variables, Statist. Probab. Lett., 48, pp. 317-325, (2000)
  • [9] Liang H.Y., Su C., Complete convergence for weighted sums of NA sequences, Statist. Probab. Lett., 45, pp. 85-95, (1999)
  • [10] Liu L.X., Wu R., Inequality of maximal partial sum and the law of iterated logarithm for sequences of NA random variables, Acta Math. Sinica., 45, pp. 969-978, (2002)