Assimilation of Observational Data in the COSMO-Ru Short-range Numerical Weather Prediction System of the Hydrometcenter of Russia

被引:0
作者
Blinov, D. V. [1 ]
Revokatova, A. P. [1 ,2 ]
Rivin, G. S. [1 ,3 ]
机构
[1] Hydrometeorol Res Ctr Russian Federat, Moscow 123376, Russia
[2] Izrael Inst Global Climate & Ecol, Moscow 107258, Russia
[3] Lomonosov Moscow State Univ, GSP1, Moscow 119991, Russia
关键词
data assimilation; nudging technique; LHN (latent heat nudging); Doppler weather radar; warm" start; nowcasting; very-short-range numerical weather prediction; COSMO model; COSMO-Ru system; RADAR;
D O I
10.3103/S1068373924070057
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The paper presents a system of regional data assimilation prepared and functioning at the Hydrometcenter of Russia for the COSMO-Ru short-range weather prediction system. It describes the assimilation methods used: both the nudging and latent heat nudging methods incorporated into the model and the developed surface temperature correction module. An optimal scheme for preparing the analysis fields and the assimilation cycle for obtaining refined initial data is also described. The presented scores of numerical experiments with and without assimilation show that the use of the detailed analysis allows improving the skill of the model very-short-range forecast, including the nowcasting interval, for the fields of temperature, humidity, wind, cloud cover, and precipitation. It is shown that the assimilation of precipitation based on radar data also makes it possible to simulate associated convective phenomena, including severe ones, much more accurately.
引用
收藏
页码:607 / 617
页数:11
相关论文
共 28 条
  • [1] [Anonymous], 2019, METHODOLOGICAL INSTR
  • [2] ANTHES RA, 1974, J ATMOS SCI, V31, P702, DOI 10.1175/1520-0469(1974)031<0702:DAAIOH>2.0.CO
  • [3] 2
  • [4] A North American Hourly Assimilation and Model Forecast Cycle: The Rapid Refresh
    Benjamin, Stanley G.
    Weygandt, Stephen S.
    Brown, John M.
    Hu, Ming
    Alexander, Curtis R.
    Smirnova, Tatiana G.
    Olson, Joseph B.
    James, Eric P.
    Dowell, David C.
    Grell, Georg A.
    Lin, Haidao
    Peckham, Steven E.
    Smith, Tracy Lorraine
    Moninger, William R.
    Kenyon, Jaymes S.
    Manikin, Geoffrey S.
    [J]. MONTHLY WEATHER REVIEW, 2016, 144 (04) : 1669 - 1694
  • [5] Tornadoes in the Russian Regions
    Chernokulsky, A. V.
    Kurgansky, M. V.
    Mokhov, I. I.
    Shikhov, A. N.
    Azhigov, I. O.
    Selezneva, E. V.
    Zakharchenko, D. I.
    Antonescu, B.
    Kuhne, T.
    [J]. RUSSIAN METEOROLOGY AND HYDROLOGY, 2021, 46 (02) : 69 - 82
  • [6] DAVIES HC, 1977, Q J ROY METEOR SOC, V103, P225, DOI 10.1002/qj.49710343602
  • [7] Kalnay E., 2003, Atmospheric Modeling, Data Assimilation and Predictability
  • [8] Kiktev D.B., 2021, Methodological Recommendations for Verification of Meteorological Forecasts
  • [9] Verification of mesoscale forecasts in the 2014 Olympic Games region for the first test period. Part I: Verification techniques and polygonal quality assessments of the COSMO model forecasts
    Murav'ev, A. V.
    Bundel, A. Yu.
    Kiktev, D. B.
    Blinov, D. V.
    Smirnov, A. V.
    [J]. RUSSIAN METEOROLOGY AND HYDROLOGY, 2013, 38 (11) : 723 - 734
  • [10] The tornado in Bashkortostan: the potential of analyzing and forecasting tornado-risk conditions
    Novitskii, M. A.
    Pavlyukov, Yu. B.
    Shmerlin, B. Ya.
    Makhnorylova, S. V.
    Serebryannik, N. I.
    Petrichenko, S. A.
    Tereb, L. A.
    Kalmykova, O. V.
    [J]. RUSSIAN METEOROLOGY AND HYDROLOGY, 2016, 41 (10) : 683 - 690