New PCA-based scheme for process fault detection and identification. Application to the Tennessee Eastman process

被引:1
作者
Guerfel, Mohamed [1 ,2 ]
Ben Aicha, Anissa [3 ]
Belkhiria, Kamel [3 ]
Messaoud, Hassani [2 ]
机构
[1] Univ Sousse, Higher Inst Appl Sci & Technol Sousse ISSATSo, Sousse, Tunisia
[2] Univ Monastir, Natl Engn Sch Monastir ENIM, LARATSI, Monastir, Tunisia
[3] Univ Monastir, Natl Engn Sch Monastir ENIM, LAS2E, Monastir, Tunisia
关键词
PCA modeling; process fault; FDI; principal angles; structured residuals; Tennessee Eastman process; DIAGNOSIS; SELECTION;
D O I
10.24425/bpasts.2024.150812
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper proposes a new principal component analysis (PCA) scheme to perform fault detection and identification (FDI) for systems affected by process faults. In this scheme, a new modeling method which maximizes the model sensitivity to a certain process fault type is proposed. This method uses normal operating or known faulty data to build the PCA model and other faulty data to fix its structure. A new structuration method is proposed to identify the process fault. This method computes the common angles between the residual subspaces of the different modes. It generates a reduced set of detection indices that are sensitive to certain process faults and insensitive to others. The proposed FDI scheme is successfully applied to the Tenessee Eastman process (TEP) supposedly affected by several process faults.
引用
收藏
页数:10
相关论文
共 30 条
[1]   Revision of the Tennessee Eastman Process Model [J].
Bathelt, Andreas ;
Ricker, N. Lawrence ;
Jelali, Mohieddine .
IFAC PAPERSONLINE, 2015, 48 (08) :309-314
[2]   Decentralized fault location, isolation and self restoration (FLISR) logic implementation using IEC 61850 GOOSE signals [J].
Bielenica, Pawel ;
Widzinska, Joanna ;
Lukaszewski, Artur ;
Nogal, Lukasz ;
Lukaszewski, Piotr .
BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2022, 70 (05)
[3]   A novel dynamic PCA algorithm for dynamic data modeling and process monitoring [J].
Dong, Yining ;
Qin, S. Joe .
JOURNAL OF PROCESS CONTROL, 2018, 67 :1-11
[4]   Fault diagnosis of time-varying processes using modified reconstruction-based contributions [J].
Elshenawy, Lamiaa M. ;
Mahmoud, Tarek A. .
JOURNAL OF PROCESS CONTROL, 2018, 70 :12-23
[5]   Integrating PCA and structural model decomposition to improve fault monitoring and diagnosis with varying operation points [J].
Garcia-Alvarez, D. ;
Bregon, A. ;
Pulido, B. ;
Alonso-Gonzalez, C. J. .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 122
[6]   Fault detection and isolation in transient states using principal component analysis [J].
Garcia-Alvarez, D. ;
Fuente, M. J. ;
Sainz, G. I. .
JOURNAL OF PROCESS CONTROL, 2012, 22 (03) :551-563
[7]   Design of optimal structured residuals from partial principal component models for fault diagnosis in linear systems [J].
Gertler, J ;
Cao, J .
JOURNAL OF PROCESS CONTROL, 2005, 15 (05) :585-603
[8]  
Golub G.H., 1996, Matrix computations, Vthird, DOI DOI 10.56021/9781421407944
[9]  
Guerfel M., 2012, Ph.D. dissertation
[10]   Fault detection of uncertain nonlinear process using interval-valued data-driven approach [J].
Harkat, M. -F. ;
Mansouri, M. ;
Nounou, M. ;
Nounou, H. .
CHEMICAL ENGINEERING SCIENCE, 2019, 205 :36-45