Probing the Berezinskii-Kosterlitz-Thouless vortex unbinding transition in two-dimensional superconductors using local noise magnetometry

被引:0
作者
Curtis, Jonathan B. [1 ,2 ,3 ]
Maksimovic, Nikola [2 ]
Poniatowski, Nicholas R. [2 ]
Yacoby, Amir [2 ]
Halperin, Bertrand [2 ]
Narang, Prineha [1 ]
Demler, Eugene [3 ]
机构
[1] Univ Calif Los Angeles, Coll Letters & Sci, Los Angeles, CA 90095 USA
[2] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[3] Swiss Fed Inst Technol, Inst Theoret Phys, CH-8093 Zurich, Switzerland
关键词
QUANTUM PHASE-TRANSITIONS; LONG-RANGE ORDER; FLUX-NOISE; CRITICAL-FIELD; VORTICES; DYNAMICS; FILMS; FERROMAGNETISM; DISSIPATION; EXCITATIONS;
D O I
10.1103/PhysRevB.110.144518
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The melting of quasi-long-range superconductivity in two spatial dimensions occurs through the proliferation and unbinding of vortex-antivortex pairs, a phenomenon known as the Berezinskii-Kosterlitz-Thouless (BKT) transition. Although signatures of this transition have been observed in bulk measurements, these experiments are often complicated, ambiguous, and unable to resolve the rich physics of the vortex unbinding transition. Here we show that local noise magnetometry is a sensitive, noninvasive probe that can provide direct information about the scale-dependent vortex dynamics. In particular, by resolving the distance and temperature dependence of the magnetic noise, it may be possible to experimentally study the renormalization group flow equations of the vortex gas and track the onset of vortex unbinding in situ. Specifically, we predict (i) a nonmonotonic dependence of the noise on temperature and (ii) the local noise is almost independent of the sample-probe distance at the BKT transition. We also show that noise magnetometry can distinguish Gaussian superconducting order-parameter fluctuations from topological vortex fluctuations and can detect the emergence of unbound vortices. The weak distance dependence at the BKT transition can also be used to distinguish it from quasiparticle background noise. Our predictions may be within experimental reach for a number of unconventional superconductors.
引用
收藏
页数:21
相关论文
共 29 条
[11]   Fulde-Ferrell states and Berezinskii-Kosterlitz-Thouless phase transition in two-dimensional imbalanced Fermi gases [J].
Yin, Shaoyu ;
Martikainen, J. -P. ;
Torma, P. .
PHYSICAL REVIEW B, 2014, 89 (01)
[12]   First and second sound in a two-dimensional harmonically trapped Bose gas across the Berezinskii-Kosterlitz-Thouless transition [J].
Liu, Xia-Ji ;
Hu, Hui .
ANNALS OF PHYSICS, 2014, 351 :531-539
[13]   First-order and Berezinskii-Kosterlitz-Thouless phase transitions in two-dimensional generalized XY models [J].
da Silva, P. A. ;
Campos-Lopes, R. J. ;
Pereira, A. R. .
PHYSICAL REVIEW B, 2024, 110 (10)
[14]   Berezinskii-Kosterlitz-Thouless phase transitions in two-dimensional non-Abelian spin models [J].
Borisenko, Oleg ;
Chelnokov, Volodymyr ;
Cuteri, Francesca ;
Papa, Alessandro .
PHYSICAL REVIEW E, 2016, 94 (01)
[15]   Observation of the Berezinskii-Kosterlitz-Thouless Transition in a Two-Dimensional Bose Gas via Matter-Wave Interferometry [J].
Sunami, S. ;
Singh, V. P. ;
Garrick, D. ;
Beregi, A. ;
Barker, A. J. ;
Luksch, K. ;
Bentine, E. ;
Mathey, L. ;
Foot, C. J. .
PHYSICAL REVIEW LETTERS, 2022, 128 (25)
[16]   Quantum phase transitions and Berezinskii-Kosterlitz-Thouless temperature in a two-dimensional spin-orbit-coupled Fermi gas [J].
Devreese, Jeroen P. A. ;
Tempere, Jacques ;
de Melo, Carlos A. R. Sa .
PHYSICAL REVIEW A, 2015, 92 (04)
[17]   Detection of Berezinskii-Kosterlitz-Thouless transitions for the two-dimensional q-state clock models with neural networks [J].
Tseng, Yuan-Heng ;
Jiang, Fu-Jiun .
EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (12)
[18]   Evidence of a field-induced Berezinskii-Kosterlitz-Thouless scenario in a two-dimensional spin-dimer system [J].
Tutsch, U. ;
Wolf, B. ;
Wessel, S. ;
Postulka, L. ;
Tsui, Y. ;
Jeschke, H. O. ;
Opahle, I. ;
Saha-Dasgupta, T. ;
Valenti, R. ;
Bruehl, A. ;
Removic-Langer, K. ;
Kretz, T. ;
Lerner, H. -W. ;
Wagner, M. ;
Lang, M. .
NATURE COMMUNICATIONS, 2014, 5
[19]   Berezinskii-Kosterlitz-Thouless Transition of Two-Component Bose Mixtures with Intercomponent Josephson Coupling [J].
Kobayashi, Michikazu ;
Eto, Minoru ;
Nitta, Muneto .
PHYSICAL REVIEW LETTERS, 2019, 123 (07)
[20]   Momentum Distribution of Cooper Pairs and Strong-Coupling Effects in a Two-Dimensional Fermi Gas Near the Berezinskii-Kosterlitz-Thouless Transition [J].
Matsumoto, M. ;
Inotani, D. ;
Ohashi, Y. .
JOURNAL OF LOW TEMPERATURE PHYSICS, 2016, 183 (3-4) :199-207