Probing the Berezinskii-Kosterlitz-Thouless vortex unbinding transition in two-dimensional superconductors using local noise magnetometry

被引:0
|
作者
Curtis, Jonathan B. [1 ,2 ,3 ]
Maksimovic, Nikola [2 ]
Poniatowski, Nicholas R. [2 ]
Yacoby, Amir [2 ]
Halperin, Bertrand [2 ]
Narang, Prineha [1 ]
Demler, Eugene [3 ]
机构
[1] Univ Calif Los Angeles, Coll Letters & Sci, Los Angeles, CA 90095 USA
[2] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[3] Swiss Fed Inst Technol, Inst Theoret Phys, CH-8093 Zurich, Switzerland
关键词
QUANTUM PHASE-TRANSITIONS; LONG-RANGE ORDER; FLUX-NOISE; CRITICAL-FIELD; VORTICES; DYNAMICS; FILMS; FERROMAGNETISM; DISSIPATION; EXCITATIONS;
D O I
10.1103/PhysRevB.110.144518
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The melting of quasi-long-range superconductivity in two spatial dimensions occurs through the proliferation and unbinding of vortex-antivortex pairs, a phenomenon known as the Berezinskii-Kosterlitz-Thouless (BKT) transition. Although signatures of this transition have been observed in bulk measurements, these experiments are often complicated, ambiguous, and unable to resolve the rich physics of the vortex unbinding transition. Here we show that local noise magnetometry is a sensitive, noninvasive probe that can provide direct information about the scale-dependent vortex dynamics. In particular, by resolving the distance and temperature dependence of the magnetic noise, it may be possible to experimentally study the renormalization group flow equations of the vortex gas and track the onset of vortex unbinding in situ. Specifically, we predict (i) a nonmonotonic dependence of the noise on temperature and (ii) the local noise is almost independent of the sample-probe distance at the BKT transition. We also show that noise magnetometry can distinguish Gaussian superconducting order-parameter fluctuations from topological vortex fluctuations and can detect the emergence of unbound vortices. The weak distance dependence at the BKT transition can also be used to distinguish it from quasiparticle background noise. Our predictions may be within experimental reach for a number of unconventional superconductors.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Berezinskii-Kosterlitz-Thouless transition and two-dimensional melting
    Ryzhov, V. N.
    Tareyeva, E. E.
    Fomin, Yu D.
    Tsiok, E. N.
    PHYSICS-USPEKHI, 2017, 60 (09) : 857 - 885
  • [2] Berezinskii-Kosterlitz-Thouless Transition in Two-Dimensional Dipole Systems
    Filinov, A.
    Prokof'ev, N. V.
    Bonitz, M.
    PHYSICAL REVIEW LETTERS, 2010, 105 (07)
  • [3] Berezinskii-Kosterlitz-Thouless transition in two-dimensional dipolar stripes
    Bombin, Raul
    Mazzanti, Ferran
    Boronat, Jordi
    PHYSICAL REVIEW A, 2019, 100 (06)
  • [4] Comment on "Berezinskii-Kosterlitz-Thouless transition in two-dimensional dipolar stripes"
    Cinti, Fabio
    Boninsegni, Massimo
    PHYSICAL REVIEW A, 2020, 102 (04)
  • [5] Vortex lattice in two-dimensional chiral XY ferromagnets and the inverse Berezinskii-Kosterlitz-Thouless transition
    Duran, Alejo Costa
    Sturla, Mauricio
    PHYSICAL REVIEW B, 2020, 102 (10)
  • [6] The Berezinskii-Kosterlitz-Thouless Transition and Melting Scenarios of Two-Dimensional Systems
    Ryzhov, V. N.
    Gaiduk, E. A.
    Tareyeva, E. E.
    Fomin, Yu. D.
    Tsiok, E. N.
    PHYSICS OF PARTICLES AND NUCLEI, 2020, 51 (04) : 786 - 790
  • [7] Berezinskii-Kosterlitz-Thouless transition in two-dimensional lattice gas models
    Chamati, Hassan
    Romano, Silvano
    PHYSICAL REVIEW B, 2006, 73 (18)
  • [8] Berezinskii-Kosterlitz-Thouless phase in two-dimensional ferroelectrics
    Xu, Changsong
    Nahas, Yousra
    Prokhorenko, Sergei
    Xiang, Hongjun
    Bellaiche, L.
    PHYSICAL REVIEW B, 2020, 101 (24)
  • [9] Nonlinear diode effect and Berezinskii-Kosterlitz-Thouless transition in purely two-dimensional noncentrosymmetric superconductors
    Nunchot, Naratip
    Yanase, Youichi
    PHYSICAL REVIEW B, 2025, 111 (09)
  • [10] Berezinskii-Kosterlitz-Thouless Transition of the Two-Dimensional XY Model on the Honeycomb Lattice
    Jiang, Fu-Jiun
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2024, 2024 (10):