Induction of patterns through crowding in a cross-diffusion model

被引:0
作者
Aldandani, Mohammed [1 ]
Ward, John [2 ]
Davidson, Fordyce A. [1 ]
机构
[1] Univ Dundee, Sch Sci & Engn, Math, Dundee, Scotland
[2] Loughborough Univ, Loughborough, England
来源
RESULTS IN APPLIED MATHEMATICS | 2024年 / 24卷
关键词
Reaction-diffusion; Pattern-formation; Crowding; Cross-diffusion; INSTABILITY; STABILITY; SYSTEM;
D O I
10.1016/j.rinam.2024.100506
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we focus on pattern formation in systems of interacting populations. We show that if one considers these populations to be "crowded" in a way that is defined below, then cross-diffusion terms appear naturally. Moreover, we show that these additional cross-diffusion terms can generate stable spatial patterns that are not manifest in the corresponding standard "dilute" formulation. This result demonstrates the need for care when choosing standard Fickian diffusion as the default in applications to population dynamics.
引用
收藏
页数:7
相关论文
共 26 条
  • [11] Turing instabilities in reaction-diffusion systems with cross diffusion
    Fanelli, Duccio
    Cianci, Claudia
    Di Patti, Francesca
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2013, 86 (04)
  • [12] ONE-DIMENSIONAL SHORT-RANGE NEAREST-NEIGHBOR INTERACTION AND ITS NONLINEAR DIFFUSION LIMIT
    Fischer, Michael
    Kanzler, Laura
    Schmeiser, Christian
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2024, 84 (01) : 1 - 18
  • [13] Pattern formation driven by cross-diffusion in a 2D domain
    Gambino, G.
    Lombardo, M. C.
    Sammartino, M.
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (03) : 1755 - 1779
  • [14] Turing instability and traveling fronts for a nonlinear reaction-diffusion system with cross-diffusion
    Gambino, G.
    Lombardo, M. C.
    Sammartino, M.
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2012, 82 (06) : 1112 - 1132
  • [15] The boundedness-by-entropy method for cross-diffusion systems
    Juengel, Ansgar
    [J]. NONLINEARITY, 2015, 28 (06) : 1963 - 2001
  • [16] Turing bifurcation in a system with cross diffusion
    Kovács, S
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 59 (04) : 567 - 581
  • [17] Turing pattern formation in a predator-prey system with cross diffusion
    Ling, Zhi
    Zhang, Lai
    Lin, Zhigui
    [J]. APPLIED MATHEMATICAL MODELLING, 2014, 38 (21-22) : 5022 - 5032
  • [18] Quasicycles in a spatial predator-prey model
    Lugo, Carlos A.
    McKane, Alan J.
    [J]. PHYSICAL REVIEW E, 2008, 78 (05):
  • [19] Cross-diffusion-driven instability for reaction-diffusion systems: analysis and simulations
    Madzvamuse, Anotida
    Ndakwo, Hussaini S.
    Barreira, Raquel
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2015, 70 (04) : 709 - 743
  • [20] Murray, 2003, MATH BIOL