Instanton analysis for the spin quantum Hall symmetry class: Nonperturbative corrections to physical observables and generalized multifractal spectrum

被引:1
作者
Parfenov, M., V [1 ,2 ,3 ]
Burmistrov, I. S. [1 ]
机构
[1] LD Landau Inst Theoret Phys, Semenova 1-A, Chernogolovka 142432, Russia
[2] HSE Univ, Dept Phys, Moscow 101000, Russia
[3] HSE Univ, Lab Condensed Matter Phys, Moscow 101000, Russia
基金
俄罗斯科学基金会;
关键词
QUASI-PARTICLES; TOPOLOGICAL INSULATORS; PLATEAU TRANSITIONS; ENERGY-LEVELS; WAVE-FUNCTION; SIGMA-MODELS; RENORMALIZATION; LOCALIZATION; SUPERCONDUCTORS; STATISTICS;
D O I
10.1103/PhysRevB.110.165431
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Recently, there has been renewed interest in studies of criticality in the spin quantum Hall effect, realized in the Altland-Zirnbauer symmetry class C of disordered, noninteracting fermions in two spatial dimensions. In our study, we develop a nonperturbative analysis of the replica two-dimensional nonlinear sigma model in class C. We explicitly construct the instanton solution with a unit topological charge. By treating fluctuations around the instanton at the Gaussian level, we calculate the instanton correction to the disorder-averaged logarithm of the partition function. We compute nonperturbative corrections to the anomalous dimensions of pure power-law scaling local operators, which determine the spectrum of generalized multifractality. We also calculate instanton corrections to the renormalized longitudinal and Hall spin conductivities and determine the topology of the phase diagram for class C. Our results demonstrate that the spin quantum Hall effect is indeed a close cousin of the integer quantum Hall effect.
引用
收藏
页数:19
相关论文
共 86 条
[1]   Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures [J].
Altland, A ;
Zirnbauer, MR .
PHYSICAL REVIEW B, 1997, 55 (02) :1142-1161
[2]   ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 109 (05) :1492-1505
[3]   Generalized multifractality in the spin quantum Hall symmetry class with interaction [J].
Babkin, S. S. ;
Burmistrov, I. S. .
PHYSICAL REVIEW B, 2022, 106 (12)
[4]   Quantum and classical localization, the spin quantum Hall effect, and generalizations [J].
Beamond, EJ ;
Cardy, J ;
Chalker, JT .
PHYSICAL REVIEW B, 2002, 65 (21) :1-10
[5]   Towards a field theory of the plateau transitions in the integer quantum Hall effect [J].
Bhaseen, MJ ;
Kogan, II ;
Soloviev, OA ;
Taniguchi, N ;
Tsvelik, AM .
NUCLEAR PHYSICS B, 2000, 580 (03) :688-720
[6]   Disordered 2d quasiparticles in class D: Dirac fermions with random mass, and dirty superconductors [J].
Bocquet, M ;
Serban, D ;
Zirnbauer, MR .
NUCLEAR PHYSICS B, 2000, 578 (03) :628-680
[7]   Gaussian free fields at the integer quantum Hall plateau transition [J].
Bondesan, R. ;
Wieczorek, D. ;
Zirnbauer, M. R. .
NUCLEAR PHYSICS B, 2017, 918 :52-90
[8]   Volumes of compact manifolds [J].
Boya, LJ ;
Sudarshan, ECG ;
Tilma, T .
REPORTS ON MATHEMATICAL PHYSICS, 2003, 52 (03) :401-422
[9]   Linking numbers for self-avoiding loops and percolation: Application to the spin quantum Hall transition [J].
Cardy, J .
PHYSICAL REVIEW LETTERS, 2000, 84 (16) :3507-3510
[10]   MULTIFRACTAL WAVE-FUNCTION AT THE LOCALIZATION THRESHOLD [J].
CASTELLANI, C ;
PELITI, L .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (08) :L429-L432