Rateless Protograph LDPC Codes for Quantum Key Distribution

被引:4
作者
Tarable, Alberto [1 ]
Paganelli, Rudi Paolo [2 ]
Ferrari, Marco [3 ]
机构
[1] CNR, Ist Elettron & Ingn Informaz & Telecomunicazioni, I-10129 Turin, Italy
[2] CNR, Ist Elettron & Ingn Informaz & Telecomunicazioni, I-40136 Bologna, Italy
[3] CNR, Ist Elettron & Ingn Informaz & Telecomunicazioni, I-20133 Milan, Italy
来源
IEEE TRANSACTIONS ON QUANTUM ENGINEERING | 2024年 / 5卷
关键词
Codes; Parity check codes; Protocols; Qubit; Photonics; Quantum key distribution; Quantum channels; BB84; low-density parity-check (LDPC) codes; quantum key distribution (QKD); rateless codes; DESIGN;
D O I
10.1109/TQE.2024.3361810
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Information reconciliation (IR) is a key step in quantum key distribution (QKD). In recent years, blind reconciliation based on low-density parity-check (LDPC) codes has replaced Cascade as a standard de facto since it guarantees efficient IR without a priori quantum bit error rate estimation and with limited interactivity between the parties, which is essential in high key-rate and long-distance QKD links. In this article, a novel blind reconciliation scheme based on rateless protograph LDPC codes is proposed. The rate adaptivity, essential for blind reconciliation, is obtained by progressively splitting LDPC check nodes, which ensures a number of degrees of freedom larger than puncturing in code design. The protograph nature of the LDPC codes allows us to use the same designed codes with a large variety of sifted-key lengths, enabling block length flexibility, which is important in largely varying key-rate link conditions. The code design is based on a new protograph discretized density evolution tool.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 18 条
[1]   Quantum cryptography: Public key distribution and coin tossing [J].
Bennett, Charles H. ;
Brassard, Gilles .
THEORETICAL COMPUTER SCIENCE, 2014, 560 :7-11
[2]   Asymmetric Adaptive LDPC-Based Information Reconciliation for Industrial Quantum Key Distribution [J].
Borisov, Nikolay ;
Petrov, Ivan ;
Tayduganov, Andrey .
ENTROPY, 2023, 25 (01)
[3]  
Brassard G., 1994, Secret-key reconciliation by public discussion, in: Advances in Cryptology-EUROCRYPT'93, P410, DOI 10.1007/3-540-48285-7_35
[4]   Fast, efficient error reconciliation for quantum cryptography [J].
Buttler, WT ;
Lamoreaux, SK ;
Torgerson, JR ;
Nickel, GH ;
Donahue, CH ;
Peterson, CG .
PHYSICAL REVIEW A, 2003, 67 (05) :8
[5]   On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit [J].
Chung, SY ;
Forney, GD ;
Richardson, TJ ;
Urbanke, R .
IEEE COMMUNICATIONS LETTERS, 2001, 5 (02) :58-60
[6]   QUANTUM CRYPTOGRAPHY BASED ON BELL THEOREM [J].
EKERT, AK .
PHYSICAL REVIEW LETTERS, 1991, 67 (06) :661-663
[7]   Efficient reconciliation protocol for discrete-variable quantum key distribution [J].
Elkouss, David ;
Leverrier, Anthony ;
Alleaume, Romain ;
Boutros, Joseph J. .
2009 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1- 4, 2009, :1879-+
[8]   QKD Iterative Information Reconciliation Based on LDPC Codes [J].
Guo Limei ;
Ran Qi ;
Jin Di ;
Huang Duan .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2020, 59 (06) :1717-1729
[9]   Symmetric Blind Information Reconciliation for Quantum Key Distribution [J].
Kiktenko, E. O. ;
Trushechkin, A. S. ;
Lim, C. C. W. ;
Kurochkin, Y. V. ;
Fedorov, A. K. .
PHYSICAL REVIEW APPLIED, 2017, 8 (04)
[10]   Blind Information Reconciliation With Polar Codes for Quantum Key Distribution [J].
Kiktenko, Evgeniy O. ;
Malyshev, Aleksei O. ;
Fedorov, Aleksey K. .
IEEE COMMUNICATIONS LETTERS, 2021, 25 (01) :79-83