Rateless Protograph LDPC Codes for Quantum Key Distribution

被引:3
作者
Tarable, Alberto [1 ]
Paganelli, Rudi Paolo [2 ]
Ferrari, Marco [3 ]
机构
[1] CNR, Ist Elettron & Ingn Informaz & Telecomunicazioni, I-10129 Turin, Italy
[2] CNR, Ist Elettron & Ingn Informaz & Telecomunicazioni, I-40136 Bologna, Italy
[3] CNR, Ist Elettron & Ingn Informaz & Telecomunicazioni, I-20133 Milan, Italy
来源
IEEE TRANSACTIONS ON QUANTUM ENGINEERING | 2024年 / 5卷
关键词
Codes; Parity check codes; Protocols; Qubit; Photonics; Quantum key distribution; Quantum channels; BB84; low-density parity-check (LDPC) codes; quantum key distribution (QKD); rateless codes; DESIGN;
D O I
10.1109/TQE.2024.3361810
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Information reconciliation (IR) is a key step in quantum key distribution (QKD). In recent years, blind reconciliation based on low-density parity-check (LDPC) codes has replaced Cascade as a standard de facto since it guarantees efficient IR without a priori quantum bit error rate estimation and with limited interactivity between the parties, which is essential in high key-rate and long-distance QKD links. In this article, a novel blind reconciliation scheme based on rateless protograph LDPC codes is proposed. The rate adaptivity, essential for blind reconciliation, is obtained by progressively splitting LDPC check nodes, which ensures a number of degrees of freedom larger than puncturing in code design. The protograph nature of the LDPC codes allows us to use the same designed codes with a large variety of sifted-key lengths, enabling block length flexibility, which is important in largely varying key-rate link conditions. The code design is based on a new protograph discretized density evolution tool.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 18 条
  • [1] Bennett C., 1984, P IEEE INT C COMPUTE, P175, DOI DOI 10.1016/J.TCS.2014.05.025
  • [2] Asymmetric Adaptive LDPC-Based Information Reconciliation for Industrial Quantum Key Distribution
    Borisov, Nikolay
    Petrov, Ivan
    Tayduganov, Andrey
    [J]. ENTROPY, 2023, 25 (01)
  • [3] Brassard G., 1994, ADV CRYPTOLOGY EUROC, P410, DOI DOI 10.1007/3-540-48285-7_35
  • [4] Fast, efficient error reconciliation for quantum cryptography
    Buttler, WT
    Lamoreaux, SK
    Torgerson, JR
    Nickel, GH
    Donahue, CH
    Peterson, CG
    [J]. PHYSICAL REVIEW A, 2003, 67 (05) : 8
  • [5] On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit
    Chung, SY
    Forney, GD
    Richardson, TJ
    Urbanke, R
    [J]. IEEE COMMUNICATIONS LETTERS, 2001, 5 (02) : 58 - 60
  • [6] QUANTUM CRYPTOGRAPHY BASED ON BELL THEOREM
    EKERT, AK
    [J]. PHYSICAL REVIEW LETTERS, 1991, 67 (06) : 661 - 663
  • [7] Efficient reconciliation protocol for discrete-variable quantum key distribution
    Elkouss, David
    Leverrier, Anthony
    Alleaume, Romain
    Boutros, Joseph J.
    [J]. 2009 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1- 4, 2009, : 1879 - +
  • [8] QKD Iterative Information Reconciliation Based on LDPC Codes
    Guo Limei
    Ran Qi
    Jin Di
    Huang Duan
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2020, 59 (06) : 1717 - 1729
  • [9] Symmetric Blind Information Reconciliation for Quantum Key Distribution
    Kiktenko, E. O.
    Trushechkin, A. S.
    Lim, C. C. W.
    Kurochkin, Y. V.
    Fedorov, A. K.
    [J]. PHYSICAL REVIEW APPLIED, 2017, 8 (04):
  • [10] Blind Information Reconciliation With Polar Codes for Quantum Key Distribution
    Kiktenko, Evgeniy O.
    Malyshev, Aleksei O.
    Fedorov, Aleksey K.
    [J]. IEEE COMMUNICATIONS LETTERS, 2021, 25 (01) : 79 - 83