Construction of composite lithium with high adhesion work and fast ionic conductivity by black phosphorus for solid-state lithium batteries

被引:6
作者
Li, Zongyang [1 ,2 ]
Tang, Desha [1 ,2 ]
Wang, Wenjie [3 ]
Li, Chen [3 ]
Deng, Rongrui [1 ,2 ]
Fang, Yongheng [1 ,2 ]
Wang, Yumei [4 ]
Xu, Chaohe [1 ,2 ,3 ]
Wang, Ronghua [1 ,2 ]
机构
[1] Chongqing Univ, Coll Mat Sci & Engn, Chongqing 400044, Peoples R China
[2] Chongqing Univ, Natl Engn Res Ctr Magnesium Alloys, Chongqing 400044, Peoples R China
[3] Chongqing Univ, Coll Aerosp Engn, Chongqing 400044, Peoples R China
[4] Natl Univ Singapore Chongqing Res Inst, Chongqing 401123, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium composite anode; LLZTO; Solid-state lithium metal batteries; Adhesion work; Li plus diffusion coefficient; ELECTROLYTE;
D O I
10.1016/j.nanoen.2024.110356
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Li6.4La3Zr1.4Ta0.6O12 (LLZTO) based solid-state lithium metal batteries (SSLMBs) have a broad application prospect because of the nonflammable nature as well as the high energy density. However, the loose contact and the contact degradation of Li/LLZTO in the stripping process result in the serious lithium dendrites growth. Herein, these issues are addressed by a composite lithium anode (CLA), which is prepared through the reaction between black phosphorus and molten lithium. In comparison to pure lithium, a higher adhesion work (722.67 mJ m-2) and Li+ diffusion coefficient (2.45x10- 12 cm2 s-1) are achieved for CLA, thus assuring the intimate interfacial contact of CLA/LLZTO interface during the lithium stripping process. As a result, a small interfacial resistance of 3.7 Omega cm2, a high critical current density of 1.5 mA cm- 2, and extra-long cycle life of 8200 h at 0.3 mA cm- 2 are achieved for CLA symmetric cell at 25 degrees C. More importantly, the full cell coupled with high mass loading LiFePO4 cathode (10.6 mg cm-2) still shows a large discharge capacity of 156.3 mAh g-1 and cycles stably at 25 degrees C. This work provides an alternative approach to develop the long lifespan and high capacity of SSLMBs.
引用
收藏
页数:11
相关论文
共 50 条
[31]   Unlocking the concentration polarization for Solid-State lithium metal batteries [J].
Yu, Jiameng ;
Zhang, Yining ;
Gao, Tianyi ;
Zhang, Xinshui ;
Lv, Yinjie ;
Zhang, Yue ;
Zhang, Chang ;
Liu, Wei .
CHEMICAL ENGINEERING JOURNAL, 2024, 487
[32]   Research Advances in Interface Engineering of Solid-State Lithium Batteries [J].
Yang, Jianfang ;
Zhang, Xianyong ;
Hou, Minchen ;
Ni, Chang ;
Chen, Chao ;
Liu, Siliu ;
Wang, Yan ;
Lu, Xueyi ;
Lu, Xia .
CARBON NEUTRALIZATION, 2025, 4 (01)
[33]   Tuning Interface Lithiophobicity for Lithium Metal Solid-State Batteries [J].
He, Xinzi ;
Ji, Xiao ;
Zhang, Bao ;
Rodrigo, Nuwanthi D. ;
Hou, Singyuk ;
Gaskell, Karen ;
Deng, Tao ;
Wan, Hongli ;
Liu, Sufu ;
Xu, Jijian ;
Nan, Bo ;
Lucht, Brett L. ;
Wang, Chunsheng .
ACS ENERGY LETTERS, 2022, 7 (01) :131-139
[34]   Ionic solid-like conductor-assisted polymer electrolytes for solid-state lithium metal batteries [J].
Yan, Shuaishuai ;
Liu, Hao ;
Chen, Xiaoxia ;
Lu, Yang ;
Cao, Qingbin ;
Liu, Kai .
SCIENCE CHINA-CHEMISTRY, 2024, 67 (12) :4116-4124
[35]   Polymer electrolytes and interfaces in solid-state lithium metal batteries [J].
Ding, Peipei ;
Lin, Zhiyuan ;
Guo, Xianwei ;
Wu, Lingqiao ;
Wang, Yongtao ;
Guo, Hongxia ;
Li, Liangliang ;
Yu, Haijun .
MATERIALS TODAY, 2021, 51 :449-474
[36]   Solid-State Lithium Batteries: Advances, Challenges, and Future Perspectives [J].
Jose, Subin Antony ;
Gallant, Amethyst ;
Gomez, Pedro Lechuga ;
Jaggers, Zacary ;
Johansson, Evan ;
Lapierre, Zachary ;
Menezes, Pradeep L. .
BATTERIES-BASEL, 2025, 11 (03)
[37]   Bipolar Textile Composite Electrodes Enabling Flexible Tandem Solid-State Lithium Metal Batteries [J].
Wei, Zhenyao ;
Luo, Yufeng ;
Yu, Wancheng ;
Zhang, Yufei ;
Cai, Jiehua ;
Xie, Chuan ;
Chang, Jian ;
Huang, Qiyao ;
Xu, Xiaoxiong ;
Deng, Yonghong ;
Zheng, Zijian .
ADVANCED MATERIALS, 2024, 36 (36)
[38]   Homogenizing Interfacial Temperature Distribution for High Performance Solid-State Lithium Metal Batteries [J].
Jiang, Chonglai ;
Lu, Haotian ;
Yang, Jinlin ;
Sun, Zejun ;
Xiao, Yukun ;
Niu, Yuxiang ;
Xu, Hongfei ;
Liu, Yuan ;
Wang, Meng ;
Yang, Haotian ;
Cui, Baihua ;
Long, Yu ;
Chen, Ganwen ;
Shan, Yi ;
Yang, Quan-Hong ;
Chen, Wei .
ACS ENERGY LETTERS, 2024, 9 (06) :2527-2535
[39]   High-performance solid-state lithium metal batteries achieved by interface modification [J].
Zhai, Lei ;
Yang, Kai ;
Jiang, Fuyi ;
Liu, Wenbao ;
Yan, Zhenhua ;
Sun, Jianchao .
JOURNAL OF ENERGY CHEMISTRY, 2023, 79 :357-364
[40]   Interfacial Catalysis Strategy for High-Performance Solid-State Lithium Metal Batteries [J].
Yang, Li ;
Zhang, Hong ;
Xu, Hantao ;
Peng, Wei ;
Wu, Lu ;
Cheng, Yu ;
Liu, Yuheng ;
Xu, Lin ;
Mai, Liqiang .
ADVANCED ENERGY MATERIALS, 2024, 14 (39)