Third-order optical nonlinearity properties of CdCl2-modifed Ge–Sb–S chalcogenide glasses

被引:0
作者
Lu X. [1 ]
Li J. [1 ]
Yang L. [1 ]
Zhang R. [1 ]
Zhang Y. [1 ]
Ren J. [1 ]
Galca A.C. [2 ]
Secu M. [2 ]
Farrell G. [3 ]
Wang P. [1 ,4 ]
机构
[1] Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin
[2] National Institute of Materials Physics, Laboratory of Multifunctional Materials and Structures, 105bis Atomistilor Street, PO Box MG—36, Magurele
[3] Photonics Research Centre, Technological University Dublin, Kevin Street
[4] Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Chalcohalide glasses; Third-order optical nonlinearity; Two-photon absorption; Z-scan technique;
D O I
10.1016/j.jnoncrysol.2019.119757
中图分类号
学科分类号
摘要
We developed a new type of chalcohalide glasses with physicochemical and nonlinear optical properties that are tunable by composition. It is found that more than 60 mol.% CdCl2 heavy metal halide can be dissolved into the ternary Ge–Sb–S system and forming stable glasses. The visible-light transparency range is extended to shorter wavelengths with the addition of CdCl2, which is beneficial for the optical quality control and infra-red (IR) system alignment. The third-order optical nonlinearity (TONL) is studied using the femtosecond Z-scan method. The results show that both the nonlinear refractive index and two photon absorption co-efficient decrease with CdCl2. Benefiting from the favorable property-tailoring effects of CdCl2, the TONL figure of merit (FOM) can be improved to meet the requirement (FOM < 1) for all-optical switching and IR photonic applications. © 2019 Elsevier B.V.
引用
收藏
相关论文
共 42 条
[1]  
Eggleton B.J., Luther-Davies B., Richardson K., Chalcogenide photonics, Nat. Photon., 5, (2011)
[2]  
Li L., Lin H., Qiao S., Zou Y., Danto S., Richardson K., Musgraves J.D., Lu N., Hu J., Integrated flexible chalcogenide glass photonic devices, Nat. Photon., 8, (2014)
[3]  
Ogusu K., Yamasaki J., Maeda S., Kitao M., Minakata M., Linear and nonlinear optical properties of Ag–As–Se chalcogenide glasses for all-optical switching, Opt. Lett., 29, pp. 265-267, (2004)
[4]  
Asobe M., Ohara T., Yokohama I., Kaino T., Low power all-optical switching in a nonlinear optical loop mirror using chalcogenide glass fibre, Electron. Letts., 32, pp. 1396-1397, (1996)
[5]  
Han Z., Lin P., Singh V., Kimerling L., Hu J., Richardson K., Agarwal A., Tan D.T.H., On-chip mid-infrared gas detection using chalcogenide glass waveguide., Appl. Phys. Lett., 108, (2016)
[6]  
Choi J.W., Han Z., Sohn B.-U., Chen G.F.R., Kimerling L.C., Richardson K.A., Agarwal A.M., Tan D.T.H., In supercontinuum generation beyond 2 µm in GeSbS waveguides, Frontiers in Optics, (2016)
[7]  
Choi J.W., Han Z., Sohn B.-U., Chen G.F.R., Smith C., Kimerling L.C., Richardson K.A., Agarwal A.M., Tan D.T.H., Nonlinear characterization of GeSbS chalcogenide glass waveguides, Sci. Rep., 6, (2016)
[8]  
Ying L., Lin C., Xu Y., Nie Q., Chen F., Dai S., Glass formation and properties of novel GeS<sub>2</sub>–Sb<sub>2</sub>S<sub>3</sub>–In<sub>2</sub>S<sub>3</sub> chalcogenide glasses, Opt. Mater. (Amst), 33, pp. 1775-1780, (2011)
[9]  
Jing R., Bo L., Wagner T., Zeng H., Chen G., Third-order optical nonlinearities of silver doped and/or silver-halide modified Ge–Ga–S glasses, Opt. Mater., 36, pp. 911-915, (2014)
[10]  
Zhao Z., A novel chalcohalide fiber with high nonlinearity and low material zero-dispersion via extrusion, J. Am. Ceram. Soc., 102, pp. 5172-5179, (2019)