Stability analysis of core-strahl electron distributions in the solar wind

被引:30
作者
Horaites, Konstantinos [1 ]
Astfalk, Patrick [2 ]
Boldyrev, Stanislav [1 ,3 ]
Jenko, Frank [2 ,4 ,5 ]
机构
[1] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA
[2] Max Planck Inst Plasma Phys, D-85748 Garching, Germany
[3] Space Sci Inst, Boulder, CO 80301 USA
[4] Tech Univ Munich, D-85748 Garching, Germany
[5] Univ Texas Austin, Austin, TX 78712 USA
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
instabilities; solar wind; plasmas; HALO; INSTABILITIES; EVOLUTION;
D O I
10.1093/mnras/sty1808
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this work, we analyse the kinetic stability of a solar wind electron distribution composed of core and strahl subpopulations. The core is modelled by a drifting Maxwellian distribution, while the strahl is modelled by an analytic function recently derived in (Horaites et al. 2018) from the collisional kinetic equation. We perform a numerical linear stability analysis using the LEOPARD solver (Astfalk & Jenko 2017), which allows for arbitrary gyrotropic distribution functions in a magnetized plasma. In contrast with previous reports, we do not find evidence for a whistler instability directly associated with the electron strahl. This may be related to the more realistic shape of the electron strahl distribution function adopted in our work, as compared to previous studies. We, however, find that for typical solar wind conditions, the core-strahl distribution is unstable to the kinetic Alfven and magnetosonic modes. The maximum growth rates for these instabilities occur at wavenumbers kd(i) less than or similar to 1 (where d, is the ion inertial length), at moderately oblique angles of propagation, thus providing a potential source of kinetic-scale turbulence. We therefore suggest that if the whistler modes are invoked to explain anomalous scattering of strahl particles, these modes may appear as a result of nonlinear mode coupling and turbulent cascade originating at scales kd(i) less than or similar to 1.
引用
收藏
页码:1499 / 1506
页数:8
相关论文
共 50 条
[41]   THE ORIGIN OF NON-MAXWELLIAN SOLAR WIND ELECTRON VELOCITY DISTRIBUTION FUNCTION: CONNECTION TO NANOFLARES IN THE SOLAR CORONA [J].
Che, H. ;
Goldstein, M. L. .
ASTROPHYSICAL JOURNAL LETTERS, 2014, 795 (02)
[42]   MIXING THE SOLAR WIND PROTON AND ELECTRON SCALES: EFFECTS OF ELECTRON TEMPERATURE ANISOTROPY ON THE OBLIQUE PROTON FIREHOSE INSTABILITY [J].
Maneva, Y. ;
Lazar, M. ;
Vinas, A. ;
Poedts, S. .
ASTROPHYSICAL JOURNAL, 2016, 832 (01)
[43]   Innovative technique for separating proton core, proton beam, and alpha particles in solar wind 3D velocity distribution functions [J].
De Marco, R. ;
Bruno, R. ;
Jagarlamudi, V. Krishna ;
D'Amicis, R. ;
Marcucci, M. F. ;
Fortunato, V. ;
Perrone, D. ;
Telloni, D. ;
Owen, C. J. ;
Louarn, P. ;
Fedorov, A. ;
Livi, S. ;
Horbury, T. .
ASTRONOMY & ASTROPHYSICS, 2023, 669
[44]   Onset and Evolution of the Oblique, Resonant Electron Firehose Instability in the Expanding Solar Wind Plasma [J].
Innocenti, Maria Elena ;
Tenerani, Anna ;
Boella, Elisabetta ;
Velli, Marco .
ASTROPHYSICAL JOURNAL, 2019, 883 (02)
[45]   On the interplay of solar wind proton and electron instabilities: linear and quasi-linear approaches [J].
Shaaban, S. M. ;
Lazar, M. ;
Lopez, R. A. ;
Wimmer-Schweingruber, R. F. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 503 (03) :3134-3144
[46]   Electron Bernstein waves and narrowband plasma waves near the electron cyclotron frequency in the near-Sun solar wind [J].
Malaspina, D. M. ;
Wilson, L. B., III ;
Ergun, R. E. ;
Bale, S. D. ;
Bonnell, J. W. ;
Goodrich, K. ;
Goetz, K. ;
Harvey, P. R. ;
MacDowall, R. J. ;
Pulupa, M. ;
Halekas, J. ;
Case, A. ;
Kasper, J. C. ;
Larson, D. ;
Stevens, M. ;
Whittlesey, P. .
ASTRONOMY & ASTROPHYSICS, 2021, 650
[47]   SOLAR WIND MAGNETIC FLUCTUATIONS AND ELECTRON NON-THERMAL TEMPERATURE ANISOTROPY: SURVEY OF WIND-SWE-VEIS OBSERVATIONS [J].
Adrian, M. L. ;
Vinas, A. F. ;
Moya, P. S. ;
Wendel, D. E. .
ASTROPHYSICAL JOURNAL, 2016, 833 (01)
[48]   On the Temporal Variability of the “Strahl” and Its Relationship with Solar Wind Characteristics: STEREO SWEA Observations [J].
P. Louarn ;
C. Diéval ;
V. Génot ;
B. Lavraud ;
A. Opitz ;
A. Fedorov ;
J. A. Sauvaud ;
D. Larson ;
A. Galvin ;
M. H. Acuňa ;
J. Luhmann .
Solar Physics, 2009, 259 :311-321
[49]   Characteristics of heat flux and electromagnetic electron-cyclotron instabilities driven by solar wind electrons [J].
Saeed, Sundas ;
Yoon, P. H. ;
Sarfraz, M. ;
Qureshi, M. N. S. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 466 (04) :4928-4936
[50]   The electron distribution function downstream of the solar-wind termination shock: Where are the hot electrons? [J].
Fahr, Hans J. ;
Richardson, John D. ;
Verscharen, Daniel .
ASTRONOMY & ASTROPHYSICS, 2015, 579