Stability analysis of core-strahl electron distributions in the solar wind

被引:0
作者
Horaites K. [1 ]
Astfalk P. [2 ]
Boldyrev S. [1 ,3 ]
Jenko F. [2 ,4 ,5 ]
机构
[1] Department of Physics, University of Wisconsin - Madison, 1150 University Avenue, Madison, 53706, WI
[2] Max Planck Institute for Plasma Physics, Garching
[3] Space Science Institute, Boulder, 80301, CO
[4] Technical University of Munich, Garching
[5] The University of Texas at Austin, Austin, 78712, TX
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
Instabilities; Plasmas; Solar wind;
D O I
10.1093/MNRAS/STY1808
中图分类号
学科分类号
摘要
In this work, we analyse the kinetic stability of a solar wind electron distribution composed of core and strahl subpopulations. The core is modelled by a drifting Maxwellian distribution, while the strahl is modelled by an analytic function recently derived in (Horaites et al. 2018) from the collisional kinetic equation. We perform a numerical linear stability analysis using the LEOPARD solver (Astfalk & Jenko 2017), which allows for arbitrary gyrotropic distribution functions in a magnetized plasma. In contrast with previous reports, we do not find evidence for a whistler instability directly associated with the electron strahl. This may be related to the more realistic shape of the electron strahl distribution function adopted in our work, as compared to previous studies. We, however, find that for typical solar wind conditions, the core-strahl distribution is unstable to the kinetic Alfvén and magnetosonic modes. The maximum growth rates for these instabilities occur at wavenumbers kdi ≲ 1 (where di is the ion inertial length), at moderately oblique angles of propagation, thus providing a potential source of kinetic-scale turbulence. We therefore suggest that if the whistler modes are invoked to explain anomalous scattering of strahl particles, these modes may appear as a result of nonlinear mode coupling and turbulent cascade originating at scales kdi ≲ 1. © 2018 The Author(s).
引用
收藏
页码:1499 / 1506
页数:7
相关论文
共 50 条
  • [21] An indication of the existence of a solar wind strahl at 10AU
    Walsh, A. P.
    Arridge, C. S.
    Masters, A.
    Lewis, G. R.
    Fazakerley, A. N.
    Jones, G. H.
    Owen, C. J.
    Coates, A. J.
    GEOPHYSICAL RESEARCH LETTERS, 2013, 40 (11) : 2495 - 2499
  • [22] Stability of the strahl electron distribution function and its dynamics
    Shevchenko, V. I.
    Galinsky, V. L.
    NONLINEAR PROCESSES IN GEOPHYSICS, 2010, 17 (05) : 593 - 597
  • [23] ON QUIET-TIME SOLAR WIND ELECTRON DISTRIBUTIONS IN DYNAMICAL EQUILIBRIUM WITH LANGMUIR TURBULENCE
    Zaheer, S.
    Yoon, P. H.
    ASTROPHYSICAL JOURNAL, 2013, 775 (02)
  • [24] Kinetic theory and fast wind observations of the electron strahl (vol 474, pg 115, 2018)
    Horaites, Konstantinos
    Boldyrev, Stanislav
    Wilson III, Lynn B.
    Vinas, Adolfo F.
    Merka, Jan
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 523 (02) : 2399 - 2400
  • [25] Electron mirror and cyclotron instabilities for solar wind plasma
    Sarfraz, M.
    Lopez, R. A.
    Ahmed, Shahzad
    Yoon, P. H.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 509 (03) : 3764 - 3771
  • [26] Electron Heat Flux in the Solar Wind: Generalized Approaches to Fluid Transport With a Variety of Skewed Velocity Distributions
    Cranmer, Steven R.
    Schiff, Avery J.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2021, 126 (10)
  • [27] On the stability of tangential discontinuity in the interaction of solar wind and cometary atmospheres
    Alexashov, D. B.
    Baranov, V. B.
    Ruderman, M. S.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 513 (01) : 223 - 231
  • [28] On the Temporal Variability of the “Strahl” and Its Relationship with Solar Wind Characteristics: STEREO SWEA Observations
    P. Louarn
    C. Diéval
    V. Génot
    B. Lavraud
    A. Opitz
    A. Fedorov
    J. A. Sauvaud
    D. Larson
    A. Galvin
    M. H. Acuňa
    J. Luhmann
    Solar Physics, 2009, 259 : 311 - 321
  • [29] Solar Orbiter SWA Observations of Electron Strahl Properties Inside 1 AU
    Owen, Christopher J.
    Abraham, Joel Baby
    Nicolaou, Georgios
    Verscharen, Daniel
    Louarn, Philippe
    Horbury, Timothy S.
    UNIVERSE, 2022, 8 (10)
  • [30] Distributions of magnetic field orientations in the turbulent solar wind
    Ragot, B. R.
    ASTROPHYSICAL JOURNAL, 2006, 651 (02) : 1209 - 1218