Realizing high energy storage performance under low electric fields in Bi0.5Na0.5TiO3-based ceramics by introducing rare earth elements

被引:0
|
作者
Zhang, Xiaoliang [1 ]
Huang, Yanchun [1 ]
Yang, Shiyu [1 ]
Liu, Yuanli [1 ]
Chen, Xiuli [1 ]
Li, Xu [1 ]
Huang, Fangyi [1 ]
Zhou, Huanfu [1 ]
机构
[1] Guilin Univ Technol, Sch Mat Sci & Engn, Key Lab Nonferrous Mat & New Proc Technol, Minist Educ, Guilin 541004, Peoples R China
关键词
Energy storage; Breakdown strength; BNST; Relaxing ferroelectric; High P max; RELAXOR CERAMICS; DENSITY; EFFICIENCY;
D O I
10.1016/j.jpowsour.2024.235548
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Relaxing ferroelectric ceramics with excellent energy storage performance are considered as the most prospective candidates applied in energy storage fields such as medical equipment, electric power transportations and military facilities, etc. However, it is difficult to achieve the high recoverable storage density (Wrec) in the unitary ceramics, especially under the low electric fields. Therefore, to achieve the outstanding Wrec, we utilize Sm3+ to substitute Bi3+ of Bi0.5Na0.5TiO3 (BNT) ceramic, which inhibits the abnormal grain growth, strengthens the breakdown field strength (EB), improves the saturation polarization (Pmax) and efficiency (7), and enlarging the RT dielectric platform. Therefore, the optimal energy storage properties (Wrec of 5.6 J/cm3, 7 of 75.4 %) are obtained in the Bi0.42Na0.5Sm0.08TiO3 (BNST) ceramic under the low EB of 305 kV/cm, companying with good temperature (20-180 degrees C) and frequence (1-220 Hz) stabilization under the electric field of 200 kV/cm. Simultaneously, the Pmax of 51.3 mu C/cm2 is achieved. All the above provide a feasible paradigm for designing dielectric materials with the outstanding energy storage performances and explore fundamental insights into the origin of the Pmax and the low residual polarization under the low electric field.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Energy storage performance of Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics with superior temperature stability under low electric fields
    Kang, Ruirui
    Wang, Zepeng
    Lou, Xiaojie
    Liu, Wenyuan
    Shi, Peng
    Zhu, Xiaopei
    Guo, Xudong
    Li, Siyi
    Sun, Haonan
    Zhang, Lixue
    Sun, Qinzhao
    CHEMICAL ENGINEERING JOURNAL, 2021, 410
  • [2] Achieving high energy-storage properties in Bi0.5Na0.5TiO3-based lead-free ceramics under low electric fields
    Wang, Hua
    Yuan, Huan
    Liu, Xiao
    Wu, Keying
    Zheng, Qiaoji
    Xu, Chenggang
    Lin, Dunmin
    CERAMICS INTERNATIONAL, 2021, 47 (01) : 1344 - 1352
  • [3] Bi0.5Na0.5TiO3-based ceramics with large energy density and high efficiency under low electric field
    Wenping Cao
    Jiabin Tu
    Qianru Lin
    Jie Sheng
    Journal of Materials Science: Materials in Electronics, 2023, 34
  • [4] Bi0.5Na0.5TiO3-based ceramics with large energy density and high efficiency under low electric field
    Cao, Wenping
    Tu, Jiabin
    Lin, Qianru
    Sheng, Jie
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2023, 34 (10)
  • [5] Structurally Regulated Design Strategy of Bi0.5Na0.5TiO3-Based Ceramics for High Energy-Storage Performance at a Low Electric Field
    Yin, Jiajia
    Li, Tianyu
    Wang, Wenjie
    Xie, Aiwen
    Rahman, Attaur
    Jiang, Xuewen
    Zhang, Yi
    Zuo, Ruzhong
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (25) : 32367 - 32374
  • [6] Equimolar high-entropy for excellent energy storage performance in Bi0.5Na0.5TiO3-based ceramics
    Wang, Changyuan
    Cao, Wenjun
    Liang, Cen
    Zhao, Hanyu
    Wang, Chunchang
    ENERGY STORAGE MATERIALS, 2024, 70
  • [7] Bi0.5Na0.5TiO3-based ceramics with high energy storage density and good thermal stability
    Xiaoshuang Qiao
    Xiaolian Chao
    Zupei Yang
    Journal of Materials Science: Materials in Electronics, 2022, 33 : 2012 - 2019
  • [8] Bi0.5Na0.5TiO3-based ceramics with high energy storage density and good thermal stability
    Qiao, Xiaoshuang
    Chao, Xiaolian
    Yang, Zupei
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2022, 33 (04) : 2012 - 2019
  • [9] Improving the Energy Storage Performance in Bi0.5Na0.5TiO3-Based Ceramics by Combining Relaxor and Antiferroelectric Properties
    Pattipaka, Srinivas
    Lim, Yeseul
    Jeong, Yundong
    Peddigari, Mahesh
    Min, Yuho
    Jeong, Jae Won
    Jang, Jongmoon
    Kim, Sung-Dae
    Hwang, Geon-Tae
    MATERIALS, 2024, 17 (20)
  • [10] Relaxation Characteristics and Energy Storage Properties of Bi0.5Na0.5TiO3-Based Ferroelectric Ceramics
    Wang S.
    Ge G.
    Qian J.
    Lin J.
    Li G.
    Liu Z.
    Zhai J.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 52 (04): : 1173 - 1182