Molecular engineering of two-dimensional hybrid perovskites with broadband emission for white light-emitting diodes

被引:0
作者
Hu H. [1 ]
Morris S.A. [1 ]
Qiao X. [2 ]
Zhao D. [3 ]
Salim T. [1 ]
Chen B. [1 ]
Chia E.E.M. [3 ]
Lam Y.M. [1 ]
机构
[1] School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore
[2] State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou
[3] Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
来源
Journal of Materials Chemistry C | 2018年 / 6卷 / 38期
关键词
Compendex;
D O I
10.1039/C8TC03001D
中图分类号
学科分类号
摘要
Two-dimensional (2D) hybrid perovskites exhibiting broadband light emission are attractive as down-converting phosphors in white light-emitting diodes (WLEDs). Despite active exploration of new members of this family of materials, fine-tuning of their emission through structural variation for realizing high color-rendering white light remains largely untapped. Here we report a series of (100)-oriented 2D perovskites whose structures are templated by the organic cations. By controlling the tilting of the inorganic octahedra, we were able to shift the broadband emission from blue to white. A photophysical study further suggests that the coexistence of self-trapped excitons and free excitons contributes to a double-peak broad emission, covering the entire visible spectrum. Using the broad-emitting perovskites as down-converting phosphors, we fabricated WLEDs with white-light emission having a correlated color temperature (CCT) of 6600 K and a high color rendering index (CRI, Ra) of 86. © The Royal Society of Chemistry.
引用
收藏
页码:10301 / 10307
页数:6
相关论文
共 31 条
  • [1] Xia Z.G., Liu Q.L., Prog. Mater. Sci., 84, pp. 59-117, (2016)
  • [2] Ye S., Xiao F., Pan Y.X., Ma Y.Y., Zhang Q.Y., Mater. Sci. Eng., R, 71, pp. 1-34, (2010)
  • [3] Dong H., Sun L.-D., Yan C.-H., Chem. Soc. Rev., 44, pp. 1608-1634, (2015)
  • [4] Wang X., Liu Q., Cai P., Wang J., Qin L., Vu T., Seo H.J., Opt. Express, 24, pp. 17792-17804, (2016)
  • [5] Chen D., Wan Z., Zhou Y., Zhou X., Yu Y., Zhong J., Ding M., Ji Z., ACS Appl. Mater. Interfaces, 7, pp. 19484-19493, (2015)
  • [6] Kovalenko M.V., Protesescu L., Bodnarchuk M.I., Science, 358, pp. 745-750, (2017)
  • [7] He X., Qiu Y., Yang S., Adv. Mater., 29, (2017)
  • [8] Li X., Cao F., Yu D., Chen J., Sun Z., Shen Y., Zhu Y., Wang L., Wei Y., Wu Y., Zeng H., Small, 13, (2017)
  • [9] Chin X.Y., Perumal A., Bruno A., Yantara N., Veldhuis S.A., Martinez-Sarti L., Chandran B., Chirvony V., Lo A.S., So J., Soci C., Gratzel M., Bolink H.J., Mathews N., Mhaisalkar S.G., Energy Environ. Sci., 11, pp. 1770-1778, (2018)
  • [10] Cai P., Wang X., Seo H.J., Yan X., Appl. Phys. Lett., 112, (2018)