Partial convolutional reparameterization network for lightweight image super-resolution

被引:1
作者
Zhang, Long [1 ]
Wan, Yi [1 ]
机构
[1] Lanzhou Univ, Sch Informat Sci & Engn, 222 S Tianshui Rd, Lanzhou 730000, Peoples R China
关键词
Single image super-resolution; Lightweight super-resolution network; Partial convolutional reparameterization network; Attention module;
D O I
10.1007/s11554-024-01565-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, convolutional neural networks (CNNs) have made significant strides in single image super-resolution (SISR). However, redundancy persists in network models concerning both channels and network structures, constituting a challenge in designing lightweight super-resolution (SR) networks. Consequently, finding a balance between efficiency and performance has emerged as the focus in SR research. In response to these challenges, we propose the Partial Convolutional Reparameterization Network (PCRN) for lightweight SR. Specifically, we initially employ partial convolution to reduce channel redundancy. Subsequently, we employ a complex network structure during model training, while in the inference stage, we utilize reparameterization techniques to compress the model, thus reducing redundancy in the network structure. Moreover, we have introduced enhanced spatial attention (ESA) and efficient channel attention (ECA) modules into our approach to enhance the model's capability to extract key information. In comparative experiments, the proposed PCRN demonstrates superior performance over other efficient SR methods.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Lightweight Single Image Super-Resolution with Selective Channel Processing Network
    Zhu, Hongyu
    Tang, Hao
    Hu, Yaocong
    Tao, Huanjie
    Xie, Chao
    SENSORS, 2022, 22 (15)
  • [32] Single Image Super-Resolution using Adaptive Upsampling Convolutional Network
    Liu, Peng
    Hong, Ying
    Liu, Yan
    PROCEEDINGS OF 2019 IEEE 8TH JOINT INTERNATIONAL INFORMATION TECHNOLOGY AND ARTIFICIAL INTELLIGENCE CONFERENCE (ITAIC 2019), 2019, : 726 - 730
  • [33] URNet: A U-Shaped Residual Network for Lightweight Image Super-Resolution
    Wang, Yuntao
    Zhao, Lin
    Liu, Liman
    Hu, Huaifei
    Tao, Wenbing
    REMOTE SENSING, 2021, 13 (19)
  • [34] Inception-like Large Kernel network for lightweight image super-resolution
    Bai, Haomou
    MULTIMEDIA SYSTEMS, 2025, 31 (01)
  • [35] Lightweight Dual-Stream Residual Network for Single Image Super-Resolution
    Jiang Y.
    Liu Y.
    Zhan W.
    Zhu D.
    IEEE Access, 2021, 9 : 129890 - 129901
  • [36] Iterative Network for Image Super-Resolution
    Liu, Yuqing
    Wang, Shiqi
    Zhang, Jian
    Wang, Shanshe
    Ma, Siwei
    Gao, Wen
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 2259 - 2272
  • [37] Multi-Residual Feature Fusion Network for lightweight Single Image Super-Resolution
    Qin, Jiayi
    He, Zheng
    Yan, Binyu
    Jeon, Gwanggil
    Yang, Xiaomin
    2021 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2021, : 1511 - 1518
  • [38] TranMamba: a lightweight hybrid transformer-Mamba network for single image super-resolution
    Zhang, Long
    Wan, Yi
    SIGNAL IMAGE AND VIDEO PROCESSING, 2025, 19 (05)
  • [39] A Multi-Branch Feature Extraction Residual Network for Lightweight Image Super-Resolution
    Liu, Chunying
    Wan, Xujie
    Gao, Guangwei
    MATHEMATICS, 2024, 12 (17)
  • [40] Lightweight hierarchical residual feature fusion network for single-image super-resolution
    Qin, Jiayi
    Liu, Feiqiang
    Liu, Kai
    Jeon, Gwanggil
    Yang, Xiaomin
    NEUROCOMPUTING, 2022, 478 : 104 - 123