Analytical and numerical validation for solving the fractional Klein-Gordon equation using the fractional complex transform and variational iteration methods

被引:4
|
作者
Khader M.M. [2 ,3 ]
Adel M. [1 ]
机构
[1] Department of Mathematics, Faculty of Science, Cairo University, Giza
[2] Department of Mathematics and Statistics, College of Science, Al-Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh
[3] Department of Mathematics, Faculty of Science, Benha University, Benha
关键词
Caputo derivative; Fractional complex transform method Variational iteration method; Nonlinear fractional Klein-Gordon equation;
D O I
10.1515/nleng-2016-0018
中图分类号
学科分类号
摘要
In this paper, we implement the fractional complex transform method to convert the nonlinear fractional Klein-Gordon equation (FKGE) to an ordinary differential equation. We use the variational iteration method (VIM) to solve the resulting ODE. The fractional derivatives are presented in terms of the Caputo sense. Some numerical examples are presented to validate the proposed techniques. Finally, a comparison with the numerical solution using Runge-Kutta of order four is given. © 2016 Walter de Gruyter GmbH, Berlin/Boston 2016.
引用
收藏
页码:141 / 145
页数:4
相关论文
共 20 条
  • [1] Analytical solutions for the fractional Klein-Gordon equation
    Kheiri, Hosseni
    Shahi, Samane
    Mojaver, Aida
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2014, 2 (02): : 99 - 114
  • [2] Numerical analysis for Klein-Gordon equation with time-space fractional derivatives
    Zhang, Jun
    Wang, JinRong
    Zhou, Yong
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (06) : 3689 - 3700
  • [3] Analytical approximate solution for nonlinear space-time fractional Klein-Gordon equation
    Gepreel, Khaled A.
    Mohamed, Mohamed S.
    CHINESE PHYSICS B, 2013, 22 (01)
  • [4] A robust numerical method to find the solutions of time-fractional Klein-Gordon equation
    Guaman, Jorge Sebastian Bunay
    Shather, Akram H.
    Hussein, Abbas Hameed Abdul
    Diaa, Nabaa Muhammad
    Khalid, Mohammed
    Kareem, Nihad Abdul
    Sreseh, Saleh Naji
    Fiallos, Juan Jose Flores
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2025, 13 (02): : 709 - 720
  • [5] Numerical solution of time fractional nonlinear Klein-Gordon equation using Sinc-Chebyshev collocation method
    Nagy, A. M.
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 310 : 139 - 148
  • [6] A New Perspective on The Numerical Solution for Fractional Klein Gordon Equation
    Karaagac, Berat
    Ucar, Yusuf
    Yagmurlu, N. Murat
    Esen, Alaattin
    JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, 2019, 22 (02): : 443 - 451
  • [7] CUBIC-BSPLINE COLLOCATION METHOD FOR NUMERICAL SOLUTIONS OF THE NONLINEAR FRACTIONAL ORDER KLEIN-GORDON EQUATION
    Damirchi, J.
    Shagholi, S.
    Foadian, S.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2025, 15 (03): : 526 - 537
  • [8] A High-Order Compact Scheme for the Nonlinear Fractional Klein-Gordon Equation
    Vong, Seakweng
    Wang, Zhibo
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2015, 31 (03) : 706 - 722
  • [9] THE NUMERICAL SOLUTION OF THE TIME-FRACTIONAL NON-LINEAR KLEIN-GORDON EQUATION VIA SPECTRAL COLLOCATION METHOD
    Yang, Yin
    Yang, Xinfa
    Wang, Jindi
    Liu, Jie
    THERMAL SCIENCE, 2019, 23 (03): : 1529 - 1537
  • [10] Analytical approximate solution for nonlinear space-time fractional Klein Gordon equation
    Khaled A. Gepreel
    Mohamed S. Mohameda
    Chinese Physics B, 2013, 22 (01) : 33 - 38