共 23 条
- [1] JEMAL A, BRAY F, CENTER M M, Et al., Global cancer statistics, Cancer Journal for Clinicians, 61, 2, pp. 59-90, (2011)
- [2] GONG P, CHENG Y H, WANG X S., Benign or malignant classification of lung nodules based on semantic attributes, Acta Electronica Sinica, 43, 12, pp. 2476-2483, (2015)
- [3] YANG J L, ZHAO J J, QIANG Y, Et al., A classification method of pulmonary nodules based on deep belief network, Science Technology and Engineering, 16, 32, pp. 69-74, (2016)
- [4] NIBALI A, HE Z, WOLLERSHEIM D., Pulmonary nodule classification with deep residual networks, International Journal of Computer Assisted Radiology and Surgery, 12, 10, pp. 1799-1808, (2017)
- [5] DAI Y J, YAN SH J, SONG CH L., Benign or malignant lung nodules classification model based on modified densenet, Chinese Journal of Medical Imaging Technology, 34, 7, pp. 1104-1109, (2018)
- [6] GUAN SH, ZHANG Q Y, XIE H W, Et al., Convolutional neural network model of CT images recognition, Journal of Computer-Aided Design & Computer Graphics, 30, 8, pp. 1530-1535, (2018)
- [7] VANBANG L E, VANBANG L E, ZHU Y, ZHENG B B, Et al., Pulmonary nodule image grey density distribution feature extraction algorithm and adenocarcinoma benign/malignant classification, Application Research of Computers, 37, 1, pp. 296-299, (2020)
- [8] RUAN H., Benign/malignant classification of lung nodules based on gray-scale density distribution feature
- [9] ARMATO III, SAMUEL M, GEOFFREY B, Et al., The lung image database consortium (LIDC) and image database resource initiative (IDRI): A completed reference database of lung nodules on CT scans, Medical Physics, 38, 2, pp. 915-931, (2011)
- [10] MCNITTGRAY M F, ARMATO S G, MEYER C R, Et al., The lung image database consortium (LIDC) data collection process for nodule detection and annotation, Acad Radiol, 14, 12, pp. 1464-1474, (2007)