Machine-learning based ocean atmospheric duct forecasting: a hybrid model-data-driven approach

被引:0
作者
Yuting F. [1 ]
Haobing G. [1 ]
Xiaojing H. [2 ]
Hui G. [1 ]
Xiangming G. [2 ]
机构
[1] Key Laboratory of Trustworthy Distributed Computing and Service, Beijing University of Posts and Telecommunications, Beijing
[2] Key Laboratory of Radio Wave Propagation Characteristics and Modeling Technology, 22nd Research Institute of China Electronics Technology Corporation, Qingdao
来源
Journal of China Universities of Posts and Telecommunications | 2023年 / 30卷 / 04期
基金
中国国家自然科学基金;
关键词
forecasting mechanism; machine learning; marine atmospheric duct; neural network fitting;
D O I
10.19682/j.cnki.1005-8885.2023.2011
中图分类号
学科分类号
摘要
The atmospheric duct is a vital radio wave environment. Conventional methods of forecasting the atmospheric duct mainly include statistical analysis based on sounding observation data and mesoscale numerical model - based prediction. The former can provide accurate duct information but is highly dependent on the acquisition of data sets. The latter is more practical but still lacks accuracy. This paper introduces machine learning to establish a novel meteorological parameter correction model for atmospheric duct prediction. In detail, using the weather research and forecasting (WRF) model data and spatiotemporal characteristics as input, sounding data as label and extreme gradient boosting (XGBoost) model for training, the meteorological parameter correction effect is the best, i. e., the accuracy of forecast meteorological parameters is improved by about 65.4%. Combining the mapping relationship between meteorological parameters and corrected atmospheric refractive index ( CARI ), and the transition mechanism of CARI to duct parameters, a new duct forecasting mechanism is proposed. Due to the high efficiency of numerical model and the accuracy of sounding data, the new duct forecasting mechanism has excellent performance. By comparing the duct forecasting results, the forecasting accuracy of the new duct forecasting model is significantly higher than that of the mesoscale model. © 2023, Beijing University of Posts and Telecommunications. All rights reserved.
引用
收藏
相关论文
共 50 条
  • [41] A machine-learning model to predict suicide risk in Japan based on national survey data
    Chou, Po-Han
    Wang, Shao-Cheng
    Wu, Chi-Shin
    Horikoshi, Masaru
    Ito, Masaya
    FRONTIERS IN PSYCHIATRY, 2022, 13
  • [42] ANALYSIS OF PIEZOELECTRIC SEMICONDUCTORS VIA DATA-DRIVEN MACHINE-LEARNING TECHNIQUES
    Guo, Yu-ting
    Li, De-zhi
    Zhang, Chun-li
    PROCEEDINGS OF THE 2020 15TH SYMPOSIUM ON PIEZOELECTRCITY, ACOUSTIC WAVES AND DEVICE APPLICATIONS (SPAWDA), 2021, : 258 - 262
  • [43] A novel hybrid intelligent model for molten iron temperature forecasting based on machine learning
    Xu, Wei
    Liu, Jingjing
    Li, Jinman
    Wang, Hua
    Xiao, Qingtai
    AIMS MATHEMATICS, 2024, 9 (01): : 1227 - 1247
  • [44] Machine-Learning Approach for Design of Nanomagnetic-Based Antennas
    Gianfagna, Carmine
    Yu, Huan
    Swaminathan, Madhavan
    Pulugurtha, Raj
    Tummala, Rao
    Antonini, Giulio
    JOURNAL OF ELECTRONIC MATERIALS, 2017, 46 (08) : 4963 - 4975
  • [45] Machine-Learning Approach for Design of Nanomagnetic-Based Antennas
    Carmine Gianfagna
    Huan Yu
    Madhavan Swaminathan
    Raj Pulugurtha
    Rao Tummala
    Giulio Antonini
    Journal of Electronic Materials, 2017, 46 : 4963 - 4975
  • [46] A Machine-Learning based generalization for an iterative Hybrid Embedded Fracture scheme
    Amir, Sahar Z.
    Sun, Shuyu
    Wheeler, Mary F.
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2020, 194
  • [47] Forecasting household electric appliances consumption and peak demand based on hybrid machine learning approach
    Ul Haq, Ejaz
    Lyu, Xue
    Jia, Youwei
    Hua, Mengyuan
    Ahmad, Fiaz
    ENERGY REPORTS, 2020, 6 : 1099 - 1105
  • [48] Forecasting of typhoon wave based on hybrid machine learning models
    Gong, Yijie
    Dong, Sheng
    Wang, Zhifeng
    OCEAN ENGINEERING, 2022, 266
  • [49] A Novel Machine-learning Model to Classify Schizophrenia Using Methylation Data Based on Gene Expression
    Vijayakumar, Karthikeyan A.
    Cho, Gwang-Won
    CURRENT BIOINFORMATICS, 2025, 20 (01) : 31 - 45
  • [50] Improving Machine-Learning Diagnostics with Model-Based Data Augmentation Showcased for a Transformer Fault
    Kahlen, Jannis N.
    Andres, Michael
    Moser, Albert
    ENERGIES, 2021, 14 (20)