Machine-learning based ocean atmospheric duct forecasting: a hybrid model-data-driven approach

被引:0
作者
Yuting F. [1 ]
Haobing G. [1 ]
Xiaojing H. [2 ]
Hui G. [1 ]
Xiangming G. [2 ]
机构
[1] Key Laboratory of Trustworthy Distributed Computing and Service, Beijing University of Posts and Telecommunications, Beijing
[2] Key Laboratory of Radio Wave Propagation Characteristics and Modeling Technology, 22nd Research Institute of China Electronics Technology Corporation, Qingdao
来源
Journal of China Universities of Posts and Telecommunications | 2023年 / 30卷 / 04期
基金
中国国家自然科学基金;
关键词
forecasting mechanism; machine learning; marine atmospheric duct; neural network fitting;
D O I
10.19682/j.cnki.1005-8885.2023.2011
中图分类号
学科分类号
摘要
The atmospheric duct is a vital radio wave environment. Conventional methods of forecasting the atmospheric duct mainly include statistical analysis based on sounding observation data and mesoscale numerical model - based prediction. The former can provide accurate duct information but is highly dependent on the acquisition of data sets. The latter is more practical but still lacks accuracy. This paper introduces machine learning to establish a novel meteorological parameter correction model for atmospheric duct prediction. In detail, using the weather research and forecasting (WRF) model data and spatiotemporal characteristics as input, sounding data as label and extreme gradient boosting (XGBoost) model for training, the meteorological parameter correction effect is the best, i. e., the accuracy of forecast meteorological parameters is improved by about 65.4%. Combining the mapping relationship between meteorological parameters and corrected atmospheric refractive index ( CARI ), and the transition mechanism of CARI to duct parameters, a new duct forecasting mechanism is proposed. Due to the high efficiency of numerical model and the accuracy of sounding data, the new duct forecasting mechanism has excellent performance. By comparing the duct forecasting results, the forecasting accuracy of the new duct forecasting model is significantly higher than that of the mesoscale model. © 2023, Beijing University of Posts and Telecommunications. All rights reserved.
引用
收藏
相关论文
共 50 条
  • [31] Binning Based Data Driven Machine Learning Models for Solar Radiation Forecasting in India
    Munshi, Anuradha
    Moharil, R. M.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF ELECTRICAL ENGINEERING, 2024, 48 (03) : 1249 - 1260
  • [32] Hybrid Approach Combining Model-Based Method with the Technology of Machine Learning for Forecasting of Dangerous Weather Phenomena
    Stankova, Elena N.
    Grechko, Irina A.
    Kachalkina, Yana N.
    Khvatkov, Evgeny V.
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2017, PT V, 2017, 10408 : 495 - 504
  • [33] Drug repositioning: a machine-learning approach through data integration
    Napolitano, Francesco
    Zhao, Yan
    Moreira, Vania M.
    Tagliaferri, Roberto
    Kere, Juha
    D'Amato, Mauro
    Greco, Dario
    JOURNAL OF CHEMINFORMATICS, 2013, 5
  • [34] A new approach of clustering based machine-learning algorithm
    Al-Omary, Alauddin Yousif
    Jamil, Mohammad Shahid
    KNOWLEDGE-BASED SYSTEMS, 2006, 19 (04) : 248 - 258
  • [35] A Machine Learning Approach for NDVI Forecasting based on Sentinel-2 Data
    Cavalli, Stefano
    Penzotti, Gabriele
    Amoretti, Michele
    Caselli, Stefano
    PROCEEDINGS OF THE 16TH INTERNATIONAL CONFERENCE ON SOFTWARE TECHNOLOGIES (ICSOFT), 2021, : 473 - 480
  • [36] A Hybrid Approach of Solar Power Forecasting Using Machine Learning
    Bajpai, Arpit
    Duchon, Markus
    2019 3RD INTERNATIONAL CONFERENCE ON SMART GRID AND SMART CITIES (ICSGSC 2019), 2019, : 108 - 113
  • [37] A data-driven machine learning model for forecasting delivery positions in logistics for workforce planning
    Eichenseer, Patrick
    Hans, Lukas
    Winkler, Herwig
    SUPPLY CHAIN ANALYTICS, 2025, 9
  • [38] A machine-learning model to predict suicide risk in Japan based on national survey data
    Chou, Po-Han
    Wang, Shao-Cheng
    Wu, Chi-Shin
    Horikoshi, Masaru
    Ito, Masaya
    FRONTIERS IN PSYCHIATRY, 2022, 13
  • [39] Data-Driven Load Forecasting Using Machine Learning and Meteorological Data
    Alrashidi A.
    Qamar A.M.
    Computer Systems Science and Engineering, 2023, 44 (03): : 1973 - 1988
  • [40] Machine-Learning Model to Predict the Intradialytic Hypotension Based on Clinical-Analytical Data
    Mendoza-Pitti, Luis
    Manuel Gomez-Pulido, Jose
    Vargas-Lombardo, Miguel
    Gomez-Pulido, Juan A.
    Polo-Luque, Maria-Luz
    Rodriguez-Puyol, Diego
    IEEE ACCESS, 2022, 10 : 72065 - 72079