Effect of Chemical Chain Extension/Solid-State Polycondensation on the Crystallization and Rheological Properties of Poly(ethylene terephthalate)

被引:0
|
作者
Gu Y. [1 ]
Xia Y. [1 ]
Cao Z. [1 ]
Geng J. [1 ]
Geng H. [1 ]
Tao S. [1 ]
Tao G. [1 ,2 ]
机构
[1] School of Materials Science & Engineering, Changzhou University, Changzhou
[2] Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou
来源
Tao, Guoliang (taogl306@163.com) | 2018年 / Sichuan University卷 / 34期
关键词
Crystallization; Intrinsic viscosity; Poly(ethylene terephthalate); Rheology; Solid-state polycondensation; Triglycidyl isocyanurate;
D O I
10.16865/j.cnki.1000-7555.2018.01.011
中图分类号
学科分类号
摘要
Poly(ethylene terephthalate) (PET) was modified firstly by chemical chain extension, and then solid-state polycondensation by using triglycidyl isocyanurate (TGIC) as chain extender. The effects of chain extender amount, reaction temperature and time of solid-state polycondensation on the intrinsic viscosity, rheological and crystallization properties of chain extended PET were investigated. The results reveal that the pre-chain extended PET obtains the intrinsic viscosity of 0.84 dL/g when the content of TGIC is 1.0%. The intrinsic viscosity of chain extended PET reaches 1.91 dL/g after solid-state polycondensation at 200 oC for 3 h. After solid-state polycondensation, the chain-extended PET melt showsapparent shear thinning behavior and the elasticity is more dominant than the viscosity in the melt. Compared with pure PET, the crystallinity of chain extended PET decreases from 30.7% to 24.8% and crystallization temperature increases from 191.6℃ to 212.7℃. © 2018, Editorial Board of Polymer Materials Science & Engineering. All right reserved.
引用
收藏
页码:54 / 59
页数:5
相关论文
共 9 条
  • [1] Vouyiouka S.N., Filgueiras V., Papaspyrides C.D., Et al., Morphological changes of poly(ethylene terephthalate-co-isophthalate) during solid state polymerization, J. Appl. Polym. Sci., 124, pp. 4457-4465, (2012)
  • [2] Lima J.A., Fitaroni L.B., Chiaretti D.V.A., Et al., Degradation process of low molar mass poly(ethylene terephthalate)/organically modified montmorillonite nanocomposites: Effect on structure, rheological, and thermal behavior, J. Thermoplast. Compos. Mater., 30, pp. 504-520, (2017)
  • [3] Makkam S., Harnnarongchai W., Rheological and mechanical properties of recycled PET modified by reactive extrusion, Energy Proced., 56, pp. 547-553, (2014)
  • [4] Duarte I.S., Tavares A.A., Lima P.S., Et al., Chain extension of virgin and recycled poly(ethylene terephthalate): effect of processing conditions and reprocessing, Polym. Degrad. Stab., 124, pp. 26-34, (2016)
  • [5] Ma C.H., Chen Y.M., Wu P.H., Et al., Study on structural characterization and crystallization property, thermal performance of PPET copolyesters, China Plastics, 31, 4, pp. 30-34, (2017)
  • [6] Achilias D.S., Gerakis K., Giliopoulos D.J., Et al., Effect of high surface area mesoporous silica fillers (MCF and SBA-15) on solid state polymerization of PET, Eur. Polym. J., 81, pp. 347-364, (2016)
  • [7] Luo S.S., Yang Z., Shen J.B., Et al., Toughening of poly (butylene terephthalate) with epoxy-filled poly (ethylene-octene) copolymer, J. Macromol. Sci., Phys., 53, pp. 265-277, (2014)
  • [8] Achilias D.S., Karandrea E., Triantafyllidis K.S., Et al., Effect of organoclays type on solid-state polymerization (SSP) of poly(ethylene terephthalate): experimental and modeling, Eur. Polym. J., 63, pp. 156-167, (2015)
  • [9] Amanizadeh F., Naderi A., Jarestani Y.C., Et al., Rheologically determined phase behavior and miscibility of reactively compatibilized poly(ethylene terephthalate)/polypropylene blends, Polym. Bull., 71, pp. 1315-1329, (2014)