Torus-Shaped Quantum Plasmonic Nano-Antenna Array for Optical Near-Field Communication

被引:0
作者
Kavitha, S. [1 ]
Singh, Ashish [2 ]
Kumar, Pramod [3 ]
Hazareena, Asia [4 ]
Saxena, Ravi Shankar [5 ]
Kumari, Kamakshi [6 ]
Aneesh, Mohammad [7 ]
机构
[1] Nitte, NMAMIT, Dept Elect & Commun, Udupi 574110, India
[2] Nitte, NMAMIT, Dept Comp & Commun, Udupi 574110, India
[3] Cent Univ Karnataka, Dept Elect & Commun Engn, Kalaburagi 585367, India
[4] VTU Belagavi, Dept Elect & Commun, PA Coll Engn, Mangalore 574153, India
[5] GMRIT, Dept Elect & Commun, Rajam 532127, India
[6] Univ Allahabad, Dept Elect & Commun, Allahabad 211002, India
[7] Veer Bahadhur Singh Purvanchal Univ, Dept Elect & Commun, Jaunpur 222003, India
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Plasmons; Antenna arrays; Zinc oxide; Substrates; Dipole antennas; Permittivity; Optical imaging; Optical reflection; Ultrafast optics; Nanoscale devices; Quantum; plasmonic; gold; torus; nanodipole antenna; zinc oxide; optical near field communication; Drude; Lorentz; directivity; gain; finite integration technique; NANOANTENNA ARRAYS; ENHANCEMENT; DESIGN;
D O I
10.1109/ACCESS.2024.3481313
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The manuscript portrays the investigation of a quantum plasmonic gold torus nanodipole antenna on a zinc oxide dielectric substrate for optical near-field communication. Initially, the dispersive behavior of gold and zinc oxide materials at terahertz is demonstrated through Drude and Lorentz models to confirm the suitability of the material for the design of nano-antenna. The proposed torus nanodipole antenna is analyzed in detail using substrate, torus and feeding gap design parameters of the antenna to obtain the desired plasmon resonance characteristics for optical near-field communication. The minimal reflection of -50.50 dB is observed at 71.3 THz with a directivity of 1.91 dBi using a single nanodipole element. The torus nanodipole antenna array is proposed to enhance the directivity and gain of the torus nanodipole antenna. The directivities of 9.425 dBi, 12.63 dBi and 14.63 dBi and the gain of 7.69 dBi, 10.77 dBi and 13.3 dBi are observed for the 2x 2, 3 x 3 and 4 x 4 element nanodipole arrays, respectively. The circuit modeling for the torus nanostructure is proposed and validated using the finite integration technique.
引用
收藏
页码:155485 / 155497
页数:13
相关论文
共 57 条
  • [1] Generation of a Conjoint Surface Plasmon by an Infrared Nano-Antenna Array
    Allsop, Thomas
    Mou, Chengbo
    Neal, Ronald
    Kundrat, Vojtech
    Wang, Changle
    Kalli, Kyriacos
    Webb, David
    Liu, Xiaoping
    Davey, Paul
    Culverhouse, Philip
    Diego Ania-Castanon, Juan
    [J]. ADVANCED PHOTONICS RESEARCH, 2021, 2 (02):
  • [2] An elliptical nanoantenna array plasmonic metasurface for efficient solar energy harvesting
    Ashrafi-Peyman, Zahra
    Jafargholi, Amir
    Moshfegh, Alireza Z.
    [J]. NANOSCALE, 2024, 16 (07) : 3591 - 3605
  • [3] Improvement of Terahertz Photoconductive Antenna using Optical Antenna Array of ZnO Nanorods
    Bashirpour, Mohammad
    Forouzmehr, Matin
    Hosseininejad, Seyed Ehsan
    Kolahdouz, Mohammadreza
    Neshat, Mohammad
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [4] Optical Antennas
    Bharadwaj, Palash
    Deutsch, Bradley
    Novotny, Lukas
    [J]. ADVANCES IN OPTICS AND PHOTONICS, 2009, 1 (03): : 438 - 483
  • [5] Borneman J. D., 2010, P IM APPL OPT C, V3, P3, DOI [10.1364/pmeta_plas.2010.mma3, DOI 10.1364/PMETA_PLAS.2010.MMA3]
  • [6] Near-Field Directive Beams From Passive and Active Asymmetric Optical Nanoantennas
    Campbell, Sawyer D.
    Ziolkowski, Richard W.
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2015, 21 (04) : 312 - 323
  • [7] Hybrid gold nanoantenna array-Dielectric thin film anti-reflection coatings on GaAs
    Davies, D. G.
    Whittaker, D. M.
    Wilson, L. R.
    [J]. SOLID STATE COMMUNICATIONS, 2012, 152 (24) : 2156 - 2159
  • [8] Dong T., 2020, Nanoplasmonics, DOI [10.5772/intechopen.90782, DOI 10.5772/INTECHOPEN.90782]
  • [9] Nanoantenna arrays combining enhancement and beam control for fluorescence-based sensing applications
    Dorh, N.
    Sarua, A.
    Ajmal, T.
    Okache, J.
    Rega, C.
    Mueller, G. M.
    Cryan, M. J.
    [J]. APPLIED OPTICS, 2017, 56 (29) : 8252 - 8256
  • [10] 3D optical Yagi-Uda nanoantenna array
    Dregely, Daniel
    Taubert, Richard
    Dorfmueller, Jens
    Vogelgesang, Ralf
    Kern, Klaus
    Giessen, Harald
    [J]. NATURE COMMUNICATIONS, 2011, 2