Deep models for multi-view 3D object recognition: a review

被引:1
作者
Alzahrani, Mona [1 ,2 ]
Usman, Muhammad [1 ,3 ,5 ]
Jarraya, Salma Kammoun [4 ]
Anwar, Saeed [1 ,3 ]
Helmy, Tarek [1 ,5 ]
机构
[1] KFUPM, Dept Informat & Comp Sci, Dhahran, Saudi Arabia
[2] Jouf Univ, Coll Comp & Informat Sci, Sakaka, Saudi Arabia
[3] KFUPM, SDAIA KFUPM Joint Res Ctr Artificial Intelligence, Dhahran, Saudi Arabia
[4] KAU, Fac Comp & Informat Technol, Comp Sci Dept, Jeddah 21589, Saudi Arabia
[5] KFUPM, Ctr Intelligent Secure Syst, Dhahran, Saudi Arabia
关键词
3D object recognition; Multi-view object recognition; Multi-view conventional neural network; 3D object classification; 3D object retrieval; CONVOLUTIONAL NEURAL-NETWORK; CLASSIFICATION; CONTACTLESS; IMAGES;
D O I
10.1007/s10462-024-10941-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This review paper focuses on the progress of deep learning-based methods for multi-view 3D object recognition. It covers the state-of-the-art techniques in this field, specifically those that utilize 3D multi-view data as input representation. The paper provides a comprehensive analysis of the pipeline for deep learning-based multi-view 3D object recognition, including the various techniques employed at each stage. It also presents the latest developments in CNN-based and transformer-based models for multi-view 3D object recognition. The review discusses existing models in detail, including the datasets, camera configurations, view selection strategies, pre-trained CNN architectures, fusion strategies, and recognition performance. Additionally, it examines various computer vision applications that use multi-view classification. Finally, it highlights future directions, factors impacting recognition performance, and trends for the development of multi-view 3D object recognition method.
引用
收藏
页数:71
相关论文
共 124 条
  • [11] Brock A, 2016, Arxiv, DOI [arXiv:1608.04236, 10.48550/arXiv.1608.04236]
  • [12] Feature-based similarity search in 3D object databases
    Bustos, B
    Keim, DA
    Saupe, D
    Schreck, T
    Vranic, DV
    [J]. ACM COMPUTING SURVEYS, 2005, 37 (04) : 345 - 387
  • [13] Review of Pavement Defect Detection Methods
    Cao, Wenming
    Liu, Qifan
    He, Zhiquan
    [J]. IEEE ACCESS, 2020, 8 : 14531 - 14544
  • [14] Chatfield K, 2014, Arxiv, DOI [arXiv:1405.3531, 10.48550/arXiv.1405.3531, DOI 10.48550/ARXIV.1405.3531]
  • [15] Visibility-Aware Point-Based Multi-View Stereo Network
    Chen, Rui
    Han, Songfang
    Xu, Jing
    Su, Hao
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (10) : 3695 - 3708
  • [16] Chen S, 2021, Arxiv, DOI arXiv:2110.13083
  • [17] VERAM: View-Enhanced Recurrent Attention Model for 3D Shape Classification
    Chen, Songle
    Zheng, Lintao
    Zhang, Yan
    Sun, Zhixin
    Xu, Kai
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2019, 25 (12) : 3244 - 3257
  • [18] Shape Completion using 3D-Encoder-Predictor CNNs and Shape Synthesis
    Dai, Angela
    Qi, Charles Ruizhongtai
    Niessner, Matthias
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 6545 - 6554
  • [19] Dosovitskiy A, 2021, Arxiv, DOI arXiv:2010.11929
  • [20] Equivariant Multi-View Networks
    Esteves, Carlos
    Xu, Yinshuang
    Allen-Blanchette, Christine
    Daniilidis, Kostas
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 1568 - 1577