Giant Uniaxial Magnetocrystalline Anisotropy in SmCrGe3

被引:0
作者
Xu, Mingyu [1 ]
Lee, Yongbin [2 ]
Ke, Xianglin [3 ]
Kang, Min-Chul [2 ]
Boswell, Matt [1 ]
Bud'ko, Sergey L. [2 ,4 ]
Zhou, Lin [2 ,5 ]
Ke, Liqin [2 ]
Li, Mingda [6 ,7 ]
Canfield, Paul C. [2 ,4 ]
Xie, Weiwei [1 ]
机构
[1] Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA
[2] Iowa State Univ, Ames Natl Lab, Ames, IA 50011 USA
[3] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA
[4] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA
[5] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA
[6] MIT, Quantum Measurement Grp, Cambridge, MA 02139 USA
[7] MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA
关键词
MAGNETIC-ANISOTROPY; SMCO5;
D O I
10.1021/jacs.4c10056
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Magnetic anisotropy is a crucial characteristic for enhancing the spintronic device performance. The synthesis of SmCrGe3 single crystals through a high-temperature solution method has led to the determination of uniaxial magnetocrystalline anisotropy. Phase verification was achieved by using scanning transmission electron microscopy (STEM), powder, and single-crystal X-ray diffraction techniques. Electrical transport and specific heat measurements indicate a Curie temperature (T C) of approximately 160 K, while magnetization measurements were utilized to determine the anisotropy fields and constants. Curie-Weiss fitting applied to magnetization data suggests the contribution of both Sm and Cr in the paramagnetic phase. Additionally, density functional theory (DFT) calculations explored the electronic structures and magnetic properties of SmCrGe3, revealing a significant easy-axis single-ion Sm magnetocrystalline anisotropy of 16 meV/fu. Based on the magnetization measurements, easy-axis magnetocrystalline anisotropy at 20 K is 13 meV/fu.
引用
收藏
页码:30294 / 30302
页数:9
相关论文
共 42 条
[1]  
Ashcroft N. W., 1975, SOLID STATE PHYS
[2]   Creation and annihilation of non-volatile fixed magnetic skyrmions using voltage control of magnetic anisotropy [J].
Bhattacharya, Dhritiman ;
Razavi, Seyed Armin ;
Wu, Hao ;
Dai, Bingqian ;
Wang, Kang L. ;
Atulasimha, Jayasimha .
NATURE ELECTRONICS, 2020, 3 (09) :539-545
[3]   Structures and physical properties of rare-earth chromium germanides RECrGe3 (RE = La-Nd, Sm) [J].
Bie, Haiying ;
Zelinska, Oksana Ya. ;
Tkachuk, Andriy V. ;
Mar, Arthur .
CHEMISTRY OF MATERIALS, 2007, 19 (18) :4613-4620
[4]  
Blaha P., 2001, TECHNISCHE UNIVERSIT, P28
[5]   New materials physics [J].
Canfield, Paul C. .
REPORTS ON PROGRESS IN PHYSICS, 2020, 83 (01)
[6]   Use of frit-disc crucibles for routine and exploratory solution growth of single crystalline samples [J].
Canfield, Paul C. ;
Kong, Tai ;
Kaluarachchi, Udhara S. ;
Jo, Na Hyun .
PHILOSOPHICAL MAGAZINE, 2016, 96 (01) :84-92
[7]   Permanent magnets: Plugging the gap [J].
Coey, J. M. D. .
SCRIPTA MATERIALIA, 2012, 67 (06) :524-529
[8]  
Coey J. M. D., 2012, MAGNETISM MAGNETICMA
[9]   Heavy fermion and Kondo lattice behavior in the itinerant ferromagnet CeCrGe3 [J].
Das, Debarchan ;
Gruner, T. ;
Pfau, H. ;
Paramanik, U. B. ;
Burkhardt, U. ;
Geibel, C. ;
Hossain, Z. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2014, 26 (10)
[10]   The influence of magnetocrystalline anisotropy on the magnetocaloric effect: A case study on Co2B [J].
Fries, M. ;
Skokov, K. P. ;
Karpenkov, D. Yu. ;
Franco, V. ;
Ener, S. ;
Gutfleisch, O. .
APPLIED PHYSICS LETTERS, 2016, 109 (23)