Mass transport of AlxGa1-xN

被引:0
|
作者
Nitta, S. [1 ]
Yukawa, Y. [1 ]
Watanabe, Y. [1 ]
Kamiyama, S. [2 ,3 ]
Amano, H. [2 ,3 ]
Akasaki, I. [2 ,3 ]
机构
[1] Dept. of Elec. and Electronic Eng., Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, 468-8502 Nagoya, Japan
[2] Dept. of Material Sci. and Eng., Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, 468-8502 Nagoya, Japan
[3] High-Tech Research Center, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, 468-8502 Nagoya, Japan
来源
Physica Status Solidi (A) Applied Research | 2002年 / 194卷 / 2 SPEC.期
关键词
Annealing - Composition - Diffusion - Least squares approximations - Mass transfer - Metallorganic vapor phase epitaxy - Photolithography - Photoluminescence - Reactive ion etching - Surface roughness - Thermodynamic stability - Transport properties;
D O I
10.1002/1521-396x(200212)194:23.0.co;2-%23
中图分类号
学科分类号
摘要
AlxGa1-xN having square trenches on its surface showed a different mass transport (MT) property for each AlN molar fraction. We also found that the MT process was interrupted at a certain stage, after which no MT occurred. The volume of the transported region decreased with increasing AlN molar fraction. MT was not observed in AlxGa1-xN with x higher than 0.06. The photoluminescence (PL) peak from the transported region measured by micro-PL mapping was 363 nm in all samples, which indicates that the transported region was composed of GaN rather than AlxGa1-xN. The root mean square surface roughness of AlxGa1-xN after annealing drastically decreased with increasing AlN molar fraction. This is due to the thermal stability of AlN and low diffusibility of Al on the surface. As a result, the terrace region became AlN rich, which caused interruption of MT.
引用
收藏
页码:485 / 488
相关论文
共 50 条
  • [1] Mass transport of AlxGa1-xN
    Nitta, S
    Yukawa, Y
    Watanabe, Y
    Kamiyama, S
    Amano, H
    Akasaki, I
    PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 2002, 194 (02): : 485 - 488
  • [2] Piezoresistivity of AlxGa1-xN layers and AlxGa1-xN/GaN heterostructures
    Eickhoff, M
    Ambacher, O
    Krötz, G
    Stutzmann, M
    JOURNAL OF APPLIED PHYSICS, 2001, 90 (07) : 3383 - 3386
  • [3] Subband transitions in AlxGa1-xN/GaN/AlxGa1-xN and AlxGa1-xN/InN/AlGa1-xN single quantum wells
    Premaratne, K
    Gurusinghe, MN
    Andersson, TG
    SUPERLATTICES AND MICROSTRUCTURES, 2005, 38 (03) : 161 - 167
  • [4] Surface states in the AlxGa1-xN barrier in AlxGa1-xN/GaN heterostructures
    Liu, J
    Shen, B
    Wang, MJ
    Zhou, YG
    Chen, DJ
    Zhang, R
    Shi, Y
    Zheng, YD
    CHINESE PHYSICS LETTERS, 2004, 21 (01) : 170 - 172
  • [5] Transport simulation of bulk AlxGa1-xN and the two-dimensional electron gas at the AlxGa1-xN/GaN interface
    Krishnan, MS
    Goldsman, N
    Christou, A
    JOURNAL OF APPLIED PHYSICS, 1998, 83 (11) : 5896 - 5903
  • [6] Doping of AlxGa1-xN
    Stampfl, C
    Van de Walle, CG
    APPLIED PHYSICS LETTERS, 1998, 72 (04) : 459 - 461
  • [7] AlN, GaN, AlxGa1-xN nanotubes and GaN/AlxGa1-xN nanotube heterojunctions
    de Almeida, James M.
    Kar, Tapas
    Piquini, Paulo
    PHYSICS LETTERS A, 2010, 374 (06) : 877 - 881
  • [8] Low temperature photoluminescence study of AlxGa1-xN/GaN/AlxGa1-xN heterostructure nanocolumns
    AbdelAll, Naglaa
    ElGhoul, Jaber
    Almokhtar, Mohamed
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2023, 34 (21)
  • [9] Impurity luminescence of AlxGa1-xN
    Zhumakulov, U.
    Inorganic Materials (English translation of Izvestiya Akademii Nauk SSR - Neorganicheskie Materialy), 1987,
  • [10] Doping of AlxGa1-xN alloys
    Stampfl, C
    Neugebauer, J
    Van de Walle, CG
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1999, 59 (1-3): : 253 - 257