Probing phase lag effect in ultra-short pulse laser heating of nano-film

被引:1
作者
Baruah M. [1 ]
Bag S. [1 ]
Kumar S. [1 ]
机构
[1] Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam
关键词
Finite element; Heat conduction; Non-Fourier; Phase lag; Pulse laser; Ultrashort;
D O I
10.1016/j.mfglet.2017.05.001
中图分类号
学科分类号
摘要
Advanced material processing using ultra-short pulse laser is ever increasing with miniature of the components due to its capability of high precision control on heat transfer and heat affected zone. The transient growth of heat affected zone is worthy to investigate for nano-scale devices under the application of femtosecond pulse laser. The cost of experiments is high at femtosecond time scale on nano-scale substrates. Hence, the physical model of heat transfer based on finite element method is developed considering non-Fourier effect. The phase lag effect in terms of two relaxation times is considered to study the heat transfer phenomena. © 2017 Society of Manufacturing Engineers (SME)
引用
收藏
页码:6 / 10
页数:4
相关论文
共 26 条
  • [1] Gamaly E., Femtosecond laser-mater interactions: theory, experiments and applications, (2011)
  • [2] Tzou D.Y., Macro-to Microscale Heat Transfer: The Lagging Behaviour, (2015)
  • [3] Nolte S., Will M., Burghoff J., Tunnermann A., Ultrafast laser processing: new options for three-dimensional photonic structures, J Modern Optics, 51, pp. 2533-2542, (2004)
  • [4] Zhang D., Li L., Li Z., Guan L., Tan X., Non-Fourier conduction model with thermal source term of ultra-short high power pulsed laser ablation and temperature evolvement before melting, Phys B, 364, pp. 285-293, (2005)
  • [5] Richter S., Nolte S., Tunnermann A., Ultrashort pulse laser welding – a new approach for high stability bonding of different glasses, Phys Procedia, 39, pp. 556-562, (2012)
  • [6] Eesley G.L., Observation of non-equilibrium electron heating in copper, Phys Rev Lett, 51, pp. 2140-2143, (1983)
  • [7] Cattaneo C., A form of heat conduction equation which eliminates the paradox of instantaneous propagation, Compute Rendus, 247, pp. 431-433, (1958)
  • [8] Vernotte P., Les paradoxes de la theorie continue de l’ equation de la chaleur, Compute Rendus, 246, pp. 3145-3155, (1958)
  • [9] Fujimoto J.G., Liu J.M., Ippen E.P., Femtosecond laser interaction with metallic tungsten and non-equilibrium electron and lattice temperatures, Phys Rev Lett, 53, pp. 1837-1840, (1984)
  • [10] Vick B., Ozisik M.N., Growth and decay of a thermal pulse predicted by the hyperbolic heat conduction equation, J Heat Transfer, 105, pp. 902-907, (1983)