Flexible MXene/CuNWs/tartaric acid composite fabrics constructed by stacking assembly for electromagnetic interference shielding

被引:1
作者
Kong, Si-yu [1 ]
Zhang, Hao-wen [1 ]
Cheng, Ming-hua [1 ]
Yu, Yuan [1 ]
Feng, Zhe-sheng [1 ]
Meng, Fanbin [2 ]
Wang, Yan [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Mat & Energy, Chengdu 610054, Peoples R China
[2] Southwest Jiaotong Univ, Sch Mat Sci & Engn, Chengdu 610031, Peoples R China
基金
中国国家自然科学基金;
关键词
MXene; Tartaric acid; EMI shielding;
D O I
10.1016/j.polymer.2024.127732
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
With the rapid development of modern communication technology, the exploration of flexible wearable shielding fabrics with exceptional electromagnetic interference (EMI) shielding performance has emerged as an utmost priority to safeguard both human beings and electronic devices from the detrimental effects of electromagnetic radiation. Herein, a scalable multilayer stacking assembly method is proposed to prepare uniform MXene/CuNWs/Tartaric Acid (TA) composites-coated fabrics. MXene, as a new type of material, can achieve higher electron and ion transfer rates. However, it is prone to oxidation in air, leading to poor stability. Benefiting from the synergistic effect of tartaric acid, the MXene/CuNWs/TA-coated fabrics exhibit certain oxidation stability and corrosion resistance, while retaining the inherent flexibility and breathability of natural polymer textiles. Furthermore, the multilayer stacking structure works perfectly with the MXene/CuNWs conductive network, enabling multiple reflections and absorptions of electromagnetic waves internally, thus effectively diminishing energy transmission. The modified fabrics exhibit a low sheet resistance of 3.25 +/- 0.12 Omega/sq and a good EMI shielding performance of 41.2 dB at X-band. Therefore, MXene/CuNWs/TA fabrics with high shielding performance are expected to reach their potential in wearable electronic products.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Bioinspired Ultrathin MXene/CNC Composite Film for Electromagnetic Interference Shielding
    Liu Zhang-Shuo
    Liu Ji
    Dai Yang
    Li Xiao-Feng
    Yu Zhong-Zhen
    Zhang Hao-Bin
    JOURNAL OF INORGANIC MATERIALS, 2020, 35 (01) : 99 - 104
  • [22] Flexible and flame-retarding phosphorylated MXene/polypropylene composites for efficient electromagnetic interference shielding
    Tang, Tingting
    Wang, Shanchi
    Jiang, Yue
    Xu, Zhiguang
    Chen, Yu
    Peng, Tianshu
    Khan, Fawad
    Feng, Jiabing
    Song, Pingan
    Zhao, Yan
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 111 : 66 - 75
  • [23] Flexible and durable cellulose/MXene nanocomposite paper for efficient electromagnetic interference shielding
    Hu, Dawei
    Huang, Xingyi
    Li, Shengtao
    Jiang, Pingkai
    COMPOSITES SCIENCE AND TECHNOLOGY, 2020, 188
  • [24] Ultrathin and flexible MXene-contained electromagnetic interference shielding composite paper designed with a protective hydrogel film
    Wei, Jiasheng
    Dai, Lei
    He, Ping
    Zhu, Meng
    Jiang, Feng
    Zhou, Zhaoxiang
    Fei, Guiqiang
    Lei, Tingzhou
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2024, 169 : 199 - 208
  • [25] Flexible Graphene/MXene Composite Thin Films for High-Performance Electromagnetic Interference Shielding and Joule Heating
    Li, Hongling
    Ng, Zhi Kai
    Tay, Roland Yingjie
    Huang, Shiyong
    Tsang, Siu Hon
    Teo, Edwin Hang Tong
    ACS APPLIED NANO MATERIALS, 2023, 6 (18) : 16730 - 16739
  • [26] Superhydrophobic hollow magnetized Fe3O4 nanospheres/MXene fabrics for electromagnetic interference shielding
    Zheng, Xianhong
    Tang, Jinhao
    Cheng, Lvzhu
    Yang, Haiwei
    Zou, Lihua
    Li, Changlong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 934
  • [27] MXene-decorated carbonized jute composite for high-performance electromagnetic interference shielding
    Sun, Yanli
    Li, Bo
    Zheng, Huafu
    Rong, Kai
    Fan, Wei
    Li, Danyang
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 22 : 658 - 667
  • [28] MXene/polyurethane auxetic composite foam for electromagnetic interference shielding and impact attenuation
    Kim, Eunyoung
    Zhang, Hongming
    Lee, Jeng-Hun
    Chen, Haomin
    Zhang, Heng
    Javed, Muhammad Humza
    Shen, Xi
    Kim, Jang-Kyo
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2021, 147 (147)
  • [29] Construction of MXene, carbon nanotubes and PDMS on cotton fabrics for electromagnetic interference shielding and hydrophobic performances
    Zuo, Hong-mei
    Wang, Rui
    Yu, Guo-ji
    Wang, Hong-jie
    Wang, He
    Ruan, Fang-tao
    Xu, Zhen-Zhen
    Zou, Li-Hua
    Li, Dian-sen
    MATERIALS LETTERS, 2025, 382
  • [30] Robust, ultrathin and flexible electromagnetic interference shielding paper designed with all-polysaccharide hydrogel and MXene
    Wei, Jiasheng
    Dai, Lei
    Xi, Xiangju
    Chen, Zhuo
    Zhu, Meng
    Dong, Cuihua
    Ding, Shujiang
    Lei, Tingzhou
    CARBOHYDRATE POLYMERS, 2024, 323