Regularized dynamic mode decomposition algorithm for time sequence predictions

被引:0
作者
Xie, Xiaoyang [1 ]
Tang, Shaoqiang [1 ]
机构
[1] Peking Univ, Coll Engn, Dept Mech & Engn Sci, Beijing 100871, Peoples R China
关键词
Dynamic mode decomposition; Reduced order modelling; Stability; Regularization; SYSTEMS;
D O I
10.1016/j.taml.2024.100555
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Dynamic Mode Decomposition (DMD) aims at extracting intrinsic mechanisms in a time sequence via linear recurrence relation of its observables, thereby predicting later terms in the sequence. Stability is a major concern in DMD predictions. We adopt a regularized form and propose a Regularized DMD (ReDMD) algorithm to determine the regularization parameter. This leverages stability and accuracy. Numerical tests for Burgers' equation demonstrate that ReDMD effectively stabilizes the DMD prediction while maintaining accuracy. Comparisons are made with the truncated DMD algorithm.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] PHASE TRANSITIONS IN THE DYNAMIC MODE DECOMPOSITION ALGORITHM
    Prasadan, Arvind
    Lodhia, Asad
    Nadakuditi, Raj Rao
    2019 IEEE 8TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP 2019), 2019, : 396 - 400
  • [2] Multiresolution Dynamic Mode Decomposition
    Kutz, J. Nathan
    Fu, Xing
    Brunton, Steven L.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2016, 15 (02): : 713 - 735
  • [3] Applications of the dynamic mode decomposition
    Schmid, P. J.
    Li, L.
    Juniper, M. P.
    Pust, O.
    THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2011, 25 (1-4) : 249 - 259
  • [4] Randomized Dynamic Mode Decomposition
    Erichson, N. Benjamin
    Mathelin, Ionel
    Kutz, J. Nathan
    Brunton, Steven L.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2019, 18 (04): : 1867 - 1891
  • [5] Dynamic Mode Decomposition with Control
    Proctor, Joshua L.
    Brunton, Steven L.
    Kutz, J. Nathan
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2016, 15 (01): : 142 - 161
  • [6] Applied Koopmanistic interpretation of subcritical prism wake physics using the dynamic mode decomposition
    Li, Cruz Y.
    Lin, Xisheng
    Hu, Gang
    Zhou, Lei
    Tse, Tim K. T.
    Fu, Yunfei
    WIND AND STRUCTURES, 2023, 37 (03) : 191 - 209
  • [7] Real-time identification of electromechanical oscillations through dynamic mode decomposition
    Berizzi, Alberto
    Bosisio, Alessandro
    Simone, Riccardo
    Vicario, Andrea
    Giannuzzi, Giorgio
    Pisani, Cosimo
    Zaottini, Roberto
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2020, 14 (19) : 3992 - 3999
  • [8] PREDICTION ACCURACY OF DYNAMIC MODE DECOMPOSITION
    Lu, Hannah
    Tartakovsky, Daniel M.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (03) : A1639 - A1662
  • [9] PREDICTIONS OF THE WAKE OF A THREE-BLADED WIND TURBINE USING DYNAMIC MODE DECOMPOSITION
    Morales-Ramirez, Carlos M.
    Benavides-Moran, Aldo G.
    PROCEEDINGS OF ASME TURBO EXPO 2023: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2023, VOL 13C, 2023,
  • [10] On the convergence of Hermitian Dynamic Mode Decomposition
    Boulle, Nicolas
    Colbrook, Matthew J.
    PHYSICA D-NONLINEAR PHENOMENA, 2025, 472