Printable stretchable interconnects

被引:111
作者
Dang W. [1 ,2 ]
Vinciguerra V. [3 ]
Lorenzelli L. [2 ]
Dahiya R. [1 ]
机构
[1] Bendable Electronics and Sensing Technologies Group, School of Engineering, University of Glasgow
[2] Microsystem Technology Research Unit, CMM, Fondazione Bruno Kessler, Trento
[3] ST Microelectronics, Catania
来源
Flexible and Printed Electronics | 2017年 / 2卷 / 01期
基金
英国工程与自然科学研究理事会;
关键词
Interconnects; Nanocomposites; Printed sensors; Stretchable electronics; Stretchable interconnects;
D O I
10.1088/2058-8585/aa5ab2
中图分类号
学科分类号
摘要
This article presents recent progress and a comprehensive overview of stretchable interconnects based on printable nanocomposites. Nanocomposite-based inks for printed stretchable interconnects have been categorized according to dispersed filler materials. They comprise of carbon-based fillers and metal-based fillers. Benefits in terms of excellent electrical performance and elastic properties make nanocomposites the ideal candidates for stretchable interconnect applications. Deeper analysis of nanocomposites-based stretchable interconnects includes the correlation between the size of fillers, percolation ratio, maximum electrical conductivity and mechanical elasticity. The key trends in the field have been highlighted using curve fitting methods on large data collected from the literature. Furthermore, a wide variety of applications for stretchable interconnects are presented.
引用
收藏
相关论文
共 145 条
[81]  
Kim S., Lee J., Choi B., Stretching and twisting sensing with liquid-metal strain gauges printed on silicone elastomers, IEEE Sens. J, 15, pp. 6077-6078, (2015)
[82]  
Ladd C., So J.H., Muth J., Dickey M.D., 3D printing of free standing liquid metal microstructures, Adv. Mater, 25, pp. 5081-5085, (2013)
[83]  
Choi S., Et al., Stretchable heater using ligand-exchanged silver nanowire nanocomposite for wearable articular thermotherapy ACS, Nano, 9, pp. 6626-6633, (2015)
[84]  
Suikkola J., Bjorninen T., Mosallaei M., Kankkunen T., Iso-Ketola P., Ukkonen L., Vanhala J., Mantysalo M., Screen-printing fabrication and characterization of stretchable electronics, Sci. Rep., pp. 1-8, (2016)
[85]  
Liu C.-X., Choi J.-W., Improved dispersion of carbon nanotubes in polymers at high concentrations, Nanomater, 2, pp. 329-347, (2012)
[86]  
De S., Coleman J.N., The effects of percolation in nanostructured transparent conductorsmrs, Bull, 36, pp. 774-781, (2011)
[87]  
Kumar S., Murthy J.Y., Alam M.A., Percolating conduction in finite nanotube networks, Phys. Rev. Lett, 95, (2005)
[88]  
Jack D.A., Yeh C.-S., Liang Z., Li S., Park J.G., Fielding J.C., Electrical conductivity modeling and experimental study of densely packedSWCNTnetworks, Nanotechnology, 21, (2010)
[89]  
Colasanti S., Bhatt V.D., Lugli P., 3D Modeling OfCNT Networks for Sensing Applications IEEE, (2014)
[90]  
Balberg I., Tunnelling and percolation in lattices and the continuum, J. Phys D: Appl. Phys., 42, (2009)