On the number of functions of k-valued logic which are polynomials modulo composite k

被引:2
作者
Selezneva S.N. [1 ]
机构
[1] Moscow State University, Moscow
基金
俄罗斯基础研究基金会;
关键词
Asymptotic behaviour; Function of k-valued logic; Numeric functions; Polynomial; Polynomial function;
D O I
10.1515/dma-2017-0002
中图分类号
学科分类号
摘要
A function of k-valued logic is called polynomial if it may be represented by a polynomial modulo k. For any composite number k we propose a uniquely defined canonical form of polynomials for polynomial functions of k-valued logic depending on an arbitrary number of variables. This canonical form is used to find, for any composite k, a formula for the number of n-place polynomial functions of k-valued logic. As a corollary, for any composite k we find the asymptotic behaviour of the logarithm of the number of n-place polynomial functions of k-valued logic. © 2017 Walter de Gruyter GmbH, Berlin/Boston.
引用
收藏
页码:7 / 14
页数:7
相关论文
共 10 条
[1]  
Yablonskii S.V., Functional constructions in a k-valued logic, Trudy Mat. Inst. Steklov, 51, pp. 5-142, (1958)
[2]  
Meshchaninov D.G., A method for constructing polynomials of k-valued logic functions, Discrete Math. Appl., 5, 4, pp. 333-346, (1995)
[3]  
Selezneva S.N., A fast algorithm for the construction of polynomials modulo k for k-valued functions for composite k, Discrete Math. Appl., 21, 5-6, pp. 651-674, (2011)
[4]  
Selezneva S.N., Constructing polynomials for functions over residue rings modulo a composite number in linear time, Lect. Notes Comput. Sci., 7353, pp. 303-312, (2012)
[5]  
Selezneva S.N., The circuit complexity of checking polynomiality for functions over a residue ring modulo a composite number is linear, Moscow Univ. Comput. Math. and Cybernetics, 37, 1, pp. 21-25, (2013)
[6]  
Niven I., Warren L.J., A generalization of Fermat's theorem, Proc. Amer. Math. Soc., 8, pp. 306-313, (1957)
[7]  
Keller G., Olson F.R., Counting polynomial functions (mod pn), Duke Math. J., 35, 4, pp. 835-838, (1968)
[8]  
Ayzenberg N.N., Semyon I.V., Tsitkin A.I., The cardinality of the class of k-valued logic n variables function which are represented by polynomials modulo k, Mnogoustoychivye Elementy i Ikh Primenenie, M. : Sov. Radio, pp. 79-83, (1971)
[9]  
Singmaster D., On polynomial functions (mod m), J. Number Theory, 6, 5, pp. 345-352, (1974)
[10]  
Ayzenberg N.N., Semyon I.V., Some criteria for the representability of k-valued logic function by polynomials modulo k, Mnogoustoychivye Elementy i Ikh Primenenie, M. : Sov. Radio, pp. 84-88, (1971)