Quantitative 3-D Optical Birefringence in Peptide Bioelectrets

被引:0
作者
O'Mahony, Charlie [1 ,2 ]
Mani, Aladin [1 ,2 ]
Kopyl, Svitlana [3 ,4 ]
Vasileva, Daria [1 ,2 ,5 ]
Vasilev, Semen [1 ,2 ,5 ]
Shur, Vladimir Y. [6 ]
Kholkin, Andrei [3 ,4 ]
Silien, Christophe [1 ,2 ]
Tofail, Syed A. M. [1 ,2 ]
机构
[1] Univ Limerick, Dept Phys, Limerick V94 T9PX, Munster, Ireland
[2] Univ Limerick, Bernal Inst, Limerick V94 T9PX, Munster, Ireland
[3] Univ Aveiro, Phys Dept, P-3810193 Aveiro, Portugal
[4] Univ Aveiro, CICECO Aveiro Inst Mat, P-3810193 Aveiro, Portugal
[5] Ural Fed Univ, Sch Nat Sci & Math, Yaketerinburg 620075, Russia
[6] Ural Fed Univ, Sch Nat Sci & Math, Ekaterinburg 620075, Russia
关键词
Optical polarization; Optical variables measurement; Optical imaging; Optical variables control; Optical refraction; Three-dimensional displays; Biomedical optical imaging; 3-D imaging; birefringence; ferroelectrets; optics; peptide; CRYSTALS; GENERATION; MICROSCOPY;
D O I
10.1109/TDEI.2024.3452648
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Peptide nanotubes (PNTs) are bioelectrets that exhibit piezoelectricity, pyroelectricity, ferroelectricity, and birefringence. Birefringence is an optical property that can be used to determine the degree of order, orientation, size, and shape of PNTs. In this work, a custom-built optical apparatus is used to quantitatively measure birefringence in three dimensions of PNTs under varying electric fields and temperature. This work also includes techniques for aligning and orienting PNTs and discusses the role of birefringence measurements in the study of PNTs.
引用
收藏
页码:2265 / 2269
页数:5
相关论文
共 50 条
[41]   Laser projected 3-D volumetric displays [J].
Soltan, P ;
Lasher, M ;
Dahlke, W ;
Acantilado, N ;
McDonald, M .
LASER APPLICATIONS ENGINEERING (LAE-96), 1997, 3091 :96-109
[42]   Laser projected 3-D volumetric displays [J].
Soltan, P ;
Lasher, M ;
Dahlke, W ;
Acantilado, N ;
McDonald, M .
COCKPIT DISPLAYS IV: FLAT PANEL DISPLAYS FOR DEFENSE APPLICATIONS, 1997, 3057 :496-506
[43]   Laser projected 3-D volumetric displays [J].
Lasher, M ;
Soltan, P ;
Dahlke, W ;
Acantilado, N ;
McDonald, M .
PROJECTION DISPLAYS II, 1996, 2650 :285-295
[44]   Innovative telescope for 3-D lidar measurements [J].
Amodeo, A ;
Boselli, A ;
Fiorani, L ;
Passeggio, G ;
Velotta, R .
JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2000, 2 (01) :73-81
[45]   Full color 3-D imaging by digital holography and removal of chromatic aberrations [J].
Ferraro, Pietro ;
Grilli, Simonetta ;
Miccio, Lisa ;
Alfieri, Domenico ;
De Nicola, Sergio ;
Finizio, Andrea ;
Javidi, Bahrarn .
JOURNAL OF DISPLAY TECHNOLOGY, 2008, 4 (01) :97-100
[46]   Transient 3-D Temperature Imaging From Multiwavelength Lateral Shearing Interferograms [J].
Cao, Lipei ;
Cao, Zhang ;
Tang, Xiaoyang ;
Xu, Lijun .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
[47]   Photoacoustic 3-D imaging of polycrystalline microstructure improved with transverse acoustic waves [J].
Threard, Theo ;
Savi, Elton De Lima ;
Avanesyan, Sergey ;
Chigarev, Nikolay ;
Hua, Zilong ;
Tournat, Vincent ;
Gusev, Vitalyi E. ;
Hurley, David H. ;
Raetz, Samuel .
PHOTOACOUSTICS, 2021, 23
[48]   Digitalization of 3-D Human Bodies: A Survey [J].
Yang, Yanhong ;
Zhang, Haozheng ;
Fernandez, Alfredo Ballester ;
Alemany, Sandra ;
Chen, Shengyong ;
Zhang, Guodao .
IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (01) :3152-3166
[49]   Wavelet adaptivity for 3-d device simulation [J].
De Marchi, Luca ;
Baravelli, Emanuele ;
Franze, Francesco ;
Speciale, Nicolo .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2007, 26 (11) :1967-1977
[50]   A 3-D Printed Portable Neuromorphic System [J].
Bao, Chao ;
Su, Haotian ;
Seol, Seung Kwon ;
Kim, Woo Soo .
IEEE SENSORS LETTERS, 2022, 6 (02)