Pattern classification of fabric defects using a probabilistic neural network and its hardware implementation using the field programmable gate array system

被引:0
作者
Hasnat A. [1 ]
Ghosh A. [1 ]
Khatun A. [2 ]
Halder S. [3 ]
机构
[1] Government College of Engineering & Textile Technology, Berhampore, West Bengal
[2] Jadavpur University, Kolkata, West Bengal
[3] Government Govt. College of Engineering and Leather Technology, Kolkata, West Bengal
来源
| 1600年 / Lukasiewicz Research Network - Institute of Biopolymers and Chemical Fibres卷 / 25期
关键词
Classification; Fabric defect; Field programmable gate arrays; Probabilistic neural network; Radial basis function;
D O I
10.5604/01.3001.0010.1709
中图分类号
学科分类号
摘要
This study proposes a fabric defect classification system using a Probabilistic Neural Network (PNN) and its hardware implementation using a Field Programmable Gate Arrays (FPGA) based system. The PNN classifier achieves an accuracy of 98 ± 2% for the test data set, whereas the FPGA based hardware system of the PNN classifier realises about 94±2% testing accuracy. The FPGA system operates as fast as 50.777 MHz, corresponding to a clock period of 19.694 ns. © 2017, Institute of Biopolymers and Chemical Fibres. All rights reserved.
引用
收藏
页码:42 / 48
页数:6
相关论文
共 50 条
  • [41] Discovery and Classification of Defects on Facing Brick Specimens Using a Convolutional Neural Network
    Beskopylny, Alexey N.
    Shcherban, Evgenii M. M.
    Stel'makh, Sergey A.
    Mailyan, Levon R.
    Meskhi, Besarion
    Razveeva, Irina
    Kozhakin, Alexey
    El'shaeva, Diana
    Beskopylny, Nikita
    Onore, Gleb
    APPLIED SCIENCES-BASEL, 2023, 13 (09):
  • [42] DSP-based arrhythmia classification using wavelet transform and probabilistic neural network
    Antonio Gutierrez-Gnecchi, Jose
    Morfin-Magana, Rodrigo
    Lorias-Espinoza, Daniel
    del Carmen Tellez-Anguiano, Adriana
    Reyes-Archundia, Enrique
    Mendez-Patino, Arturo
    Castaneda-Miranda, Rodrigo
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2017, 32 : 44 - 56
  • [43] Multi Pulse Rectifier Classification using Scale Selection Wavelet & Probabilistic Neural Network
    Tan, Rodney H. G.
    Ramachandaramurthy, V. K.
    2009 INTERNATIONAL CONFERENCE ON POWER ELECTRONICS AND DRIVE SYSTEMS, VOLS 1 AND 2, 2009, : 778 - 783
  • [44] Traffic Pattern Classification in Smart Cities Using Deep Recurrent Neural Network
    Ismaeel, Ayad Ghany
    Janardhanan, Krishnadas
    Sankar, Manishankar
    Natarajan, Yuvaraj
    Mahmood, Sarmad Nozad
    Alani, Sameer
    Shather, Akram H.
    SUSTAINABILITY, 2023, 15 (19)
  • [45] Image texture classification using wavelet based curve fitting and probabilistic neural network
    Ramakrishnan, Srinivasan
    Selvan, Srinivasan
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2007, 17 (04) : 266 - 275
  • [46] Detection and Classification of Power Quality Disturbances in Time Domain Using Probabilistic Neural Network
    Chen, Z. M.
    Li, M. S.
    Ji, T. Y.
    Wu, Q. H.
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 1277 - 1282
  • [47] Field-Programmable Gate Array-Based True Random Number Generator Using Capacitive Oscillators
    Hajduk, Zbigniew
    ELECTRONICS, 2024, 13 (23):
  • [48] Prediction of flow pattern of gas-liquid flow through circular microchannel using probabilistic neural network
    Timung, Seim
    Mandal, Tapas K.
    APPLIED SOFT COMPUTING, 2013, 13 (04) : 1674 - 1685
  • [49] Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array
    Ustun, Teoman E.
    Iftimia, Nicusor V.
    Ferguson, R. Daniel
    Hammer, Daniel X.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2008, 79 (11)
  • [50] A novel high speed Artificial Neural Network-based chaotic True Random Number Generator on Field Programmable Gate Array
    Alcin, Murat
    Koyuncu, Ismail
    Tuna, Murat
    Varan, Metin
    Pehlivan, Ihsan
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2019, 47 (03) : 365 - 378