Pattern classification of fabric defects using a probabilistic neural network and its hardware implementation using the field programmable gate array system

被引:0
作者
Hasnat A. [1 ]
Ghosh A. [1 ]
Khatun A. [2 ]
Halder S. [3 ]
机构
[1] Government College of Engineering & Textile Technology, Berhampore, West Bengal
[2] Jadavpur University, Kolkata, West Bengal
[3] Government Govt. College of Engineering and Leather Technology, Kolkata, West Bengal
来源
| 1600年 / Lukasiewicz Research Network - Institute of Biopolymers and Chemical Fibres卷 / 25期
关键词
Classification; Fabric defect; Field programmable gate arrays; Probabilistic neural network; Radial basis function;
D O I
10.5604/01.3001.0010.1709
中图分类号
学科分类号
摘要
This study proposes a fabric defect classification system using a Probabilistic Neural Network (PNN) and its hardware implementation using a Field Programmable Gate Arrays (FPGA) based system. The PNN classifier achieves an accuracy of 98 ± 2% for the test data set, whereas the FPGA based hardware system of the PNN classifier realises about 94±2% testing accuracy. The FPGA system operates as fast as 50.777 MHz, corresponding to a clock period of 19.694 ns. © 2017, Institute of Biopolymers and Chemical Fibres. All rights reserved.
引用
收藏
页码:42 / 48
页数:6
相关论文
共 50 条
  • [31] Image texture classification using wavelet packet transform and probabilistic neural network
    Ramakrishnan, S.
    Selvan, S.
    INTELLIGENT DATA ANALYSIS, 2007, 11 (06) : 691 - 705
  • [32] Conception of complex probabilistic neural network system for classification of partial discharge patterns using multifarious inputs
    Karthikeyan, B
    Gopal, S
    Vimala, M
    EXPERT SYSTEMS WITH APPLICATIONS, 2005, 29 (04) : 953 - 963
  • [33] Automatic microstructural characterization and classification using probabilistic neural network on ultrasound signals
    Masoud Vejdannik
    Ali Sadr
    Journal of Intelligent Manufacturing, 2018, 29 : 1923 - 1940
  • [34] Supervised texture classification using a probabilistic neural network and constraint satisfaction model
    Raghu, PP
    Yegnanarayana, B
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1998, 9 (03): : 516 - 522
  • [35] Real-time power monitoring using field-programmable gate array with IoT technology
    Lee, Kok Tong
    Mun, Hou Kit
    IET SCIENCE MEASUREMENT & TECHNOLOGY, 2019, 13 (06) : 931 - 935
  • [36] Signal classification and software–hardware implementation of digital filter banks based on field-programmable gate arrays and compute unified device architecture
    Kaplun D.I.
    Klionskiy D.M.
    Gulvanskiy V.V.
    Voznesenskiy A.S.
    Golubkov A.M.
    Geppener V.V.
    Kupriyanov M.S.
    Pattern Recognition and Image Analysis, 2016, 26 (03) : 506 - 517
  • [37] Automatic microstructural characterization and classification using probabilistic neural network on ultrasound signals
    Vejdannik, Masoud
    Sadr, Ali
    JOURNAL OF INTELLIGENT MANUFACTURING, 2018, 29 (08) : 1923 - 1940
  • [38] Early warning fire detection system using a probabilistic neural network
    Rose-Pehrsson, SL
    Hart, SJ
    Street, TT
    Williams, FW
    Hammond, MH
    Gottuk, DT
    Wright, MT
    Wong, JT
    FIRE TECHNOLOGY, 2003, 39 (02) : 147 - 171
  • [39] Early Warning Fire Detection System Using a Probabilistic Neural Network
    Susan L. Rose-Pehrsson
    Sean J. Hart
    Thomas T. Street
    Frederick W. Williams
    Mark H. Hammond
    Daniel T. Gottuk
    Mark T. Wright
    Jennifer T. Wong
    Fire Technology, 2003, 39 : 147 - 171
  • [40] Discovery and Classification of Defects on Facing Brick Specimens Using a Convolutional Neural Network
    Beskopylny, Alexey N.
    Shcherban, Evgenii M. M.
    Stel'makh, Sergey A.
    Mailyan, Levon R.
    Meskhi, Besarion
    Razveeva, Irina
    Kozhakin, Alexey
    El'shaeva, Diana
    Beskopylny, Nikita
    Onore, Gleb
    APPLIED SCIENCES-BASEL, 2023, 13 (09):