Pattern classification of fabric defects using a probabilistic neural network and its hardware implementation using the field programmable gate array system

被引:0
作者
Hasnat A. [1 ]
Ghosh A. [1 ]
Khatun A. [2 ]
Halder S. [3 ]
机构
[1] Government College of Engineering & Textile Technology, Berhampore, West Bengal
[2] Jadavpur University, Kolkata, West Bengal
[3] Government Govt. College of Engineering and Leather Technology, Kolkata, West Bengal
来源
| 1600年 / Lukasiewicz Research Network - Institute of Biopolymers and Chemical Fibres卷 / 25期
关键词
Classification; Fabric defect; Field programmable gate arrays; Probabilistic neural network; Radial basis function;
D O I
10.5604/01.3001.0010.1709
中图分类号
学科分类号
摘要
This study proposes a fabric defect classification system using a Probabilistic Neural Network (PNN) and its hardware implementation using a Field Programmable Gate Arrays (FPGA) based system. The PNN classifier achieves an accuracy of 98 ± 2% for the test data set, whereas the FPGA based hardware system of the PNN classifier realises about 94±2% testing accuracy. The FPGA system operates as fast as 50.777 MHz, corresponding to a clock period of 19.694 ns. © 2017, Institute of Biopolymers and Chemical Fibres. All rights reserved.
引用
收藏
页码:42 / 48
页数:6
相关论文
共 50 条
  • [1] Field-programmable gate array implementation of a probabilistic neural network for motor cortical decoding in rats
    Zhou, Fan
    Liu, Jun
    Yu, Yi
    Tian, Xiang
    Liu, Hui
    Hao, Yaoyao
    Zhang, Shaomin
    Chen, Weidong
    Dai, Jianhua
    Zheng, Xiaoxiang
    JOURNAL OF NEUROSCIENCE METHODS, 2010, 185 (02) : 299 - 306
  • [2] Edge-Intelligence-Based Seismic Event Detection Using a Hardware-Efficient Neural Network With Field-Programmable Gate Array
    Zhu, Yadongyang
    Zhao, Shuguang
    Zhang, Fudong
    Wei, Wei
    Zhao, Fa
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (06) : 9432 - 9443
  • [3] Classification of Electrical Appliances Using Magnetic Field and Probabilistic Neural Network
    Rosdi, Nurul Aishah Mohd
    Nordin, Farah Hani
    Ramasamy, Agileswari K.
    Mustafa, Nur Badariah Ahmad
    2014 IEEE 5TH CONTROL AND SYSTEM GRADUATE RESEARCH COLLOQUIUM (ICSGRC), 2014, : 268 - 273
  • [4] Implementation of Field-Programmable Gate Array Platform for Object Classification Tasks Using Spike-Based Backpropagated Deep Convolutional Spiking Neural Networks
    Kakani, Vijay
    Li, Xingyou
    Cui, Xuenan
    Kim, Heetak
    Kim, Byung-Soo
    Kim, Hakil
    MICROMACHINES, 2023, 14 (07)
  • [5] Field programmable gate array implementation of a fault location system in transmission lines based on artificial neural networks
    Ezquerra, J.
    Valverde, V.
    Mazon, A. J.
    Zamora, I.
    Zamora, J. J.
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2011, 5 (02) : 191 - 198
  • [6] A comparative study on classification of magnetoencephalography signals using probabilistic neural network and multilayer neural network
    Onursal Cetin
    Feyzullah Temurtas
    Soft Computing, 2021, 25 : 2267 - 2275
  • [7] A comparative study on classification of magnetoencephalography signals using probabilistic neural network and multilayer neural network
    Cetin, Onursal
    Temurtas, Feyzullah
    SOFT COMPUTING, 2021, 25 (03) : 2267 - 2275
  • [8] CLASSIFICATION OF CHROMOSOMES USING A PROBABILISTIC NEURAL-NETWORK
    SWEENEY, WP
    MUSAVI, MT
    GUIDI, JN
    CYTOMETRY, 1994, 16 (01): : 17 - 24
  • [9] Unsupervised classification of grayscale image using Probabilistic Neural Network (PNN)
    Iounousse, Jawad
    Farhi, Ahmed
    El motassadeq, Ahmed
    Chehouani, Hassan
    Erraki, Salah
    2012 INTERNATIONAL CONFERENCE ON MULTIMEDIA COMPUTING AND SYSTEMS (ICMCS), 2012, : 102 - 106
  • [10] Computerized color distinguishing system for color printed fabric by using the approach of probabilistic neural network
    Kuo, Chung-Feng Jeffrey
    Huang, Yi-Jen
    Su, Te-Li
    Shih, Chung-Yang
    POLYMER-PLASTICS TECHNOLOGY AND ENGINEERING, 2008, 47 (03) : 264 - 272