Classification of lung nodules using deep learning

被引:0
作者
Kwajiri T. [1 ]
Tezuka T. [2 ]
机构
[1] Department of Knowledge and Library Information Science, Faculty of Information, University of Tsukuba, Tsukuba
[2] Faculty of Library, Information, and Media Science, University of Tsukuba, Tsukuba
来源
Transactions of Japanese Society for Medical and Biological Engineering | 2017年 / 55卷 / Proc期
关键词
Cancer; Convolutional neural network; Deep learning; Deep neural network; Lung nodules; Residual network;
D O I
10.11239/jsmbe.55Annual.516
中图分类号
学科分类号
摘要
Deep learning methods such as the Convolutional Neural Network and the Residual Network were applied to CT scan images in order to classify whether lung nodules become cancerous or not. Especially, the effect of changing the number of layers in the Residual Network was. Experiment were carried out using several models having these two network architectures and consisting of different numbers of layers and parameters. © 2017, Japan Soc. of Med. Electronics and Biol. Engineering. All rights reserved.
引用
收藏
页码:516 / 517
页数:1
相关论文
共 50 条
[31]   Automated Lung Nodule Detection and Classification Using Deep Learning Combined with Multiple Strategies [J].
Nasrullah, Nasrullah ;
Sang, Jun ;
Alam, Mohammad S. ;
Mateen, Muhammad ;
Cai, Bin ;
Hu, Haibo .
SENSORS, 2019, 19 (17)
[32]   Deep Learning Algorithm for Classification and Prediction of Lung Cancer using CT Scan Images [J].
Mhaske, Diksha ;
Rajeswari, Kannan ;
Tekade, Ruchita .
2019 5TH INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION, CONTROL AND AUTOMATION (ICCUBEA), 2019,
[33]   Weakly-supervised learning for lung carcinoma classification using deep learning [J].
Kanavati, Fahdi ;
Toyokawa, Gouji ;
Momosaki, Seiya ;
Rambeau, Michael ;
Kozuma, Yuka ;
Shoji, Fumihiro ;
Yamazaki, Koji ;
Takeo, Sadanori ;
Iizuka, Osamu ;
Tsuneki, Masayuki .
SCIENTIFIC REPORTS, 2020, 10 (01)
[34]   Classification of Thyroid Nodules by Using Deep Learning Radiomics Based on Ultrasound Dynamic Video [J].
Zhang, Chunquan ;
Liu, Dan ;
Huang, Long ;
Zhao, Yu ;
Chen, Lili ;
Guo, Youmin .
JOURNAL OF ULTRASOUND IN MEDICINE, 2022, 41 (12) :2993-3002
[35]   Comparison Study of Radiomics and Deep Learning-Based Methods for Thyroid Nodules Classification Using Ultrasound Images [J].
Wang, Yongfeng ;
Yue, Wenwen ;
Li, Xiaolong ;
Liu, Shuyu ;
Guo, Lehang ;
Xu, Huixiong ;
Zhang, Heye ;
Yang, Guang .
IEEE ACCESS, 2020, 8 :52010-52017
[36]   Melanoma Classification using Machine Learning and Deep Learning [J].
Tran Anh Vu ;
Pham Quang Son ;
Dinh Nghia Hiep ;
Hoang Quang Huy ;
Nguyen Phan Kien ;
Pham Thi Viet Huong .
2023 1ST INTERNATIONAL CONFERENCE ON HEALTH SCIENCE AND TECHNOLOGY, ICHST 2023, 2023,
[37]   Lung cancer prediction by Deep Learning to identify benign lung nodules [J].
Heuvelmans, Marjolein A. ;
van Ooijen, Peter M. A. ;
Ather, Sarim ;
Silva, Carlos Francisco ;
Han, Daiwei ;
Heussel, Claus Peter ;
Hickes, William ;
Kauczor, Hans-Ulrich ;
Novotny, Petr ;
Peschl, Heiko ;
Rook, Mieneke ;
Rubtsov, Roman ;
von Stackelberg, Oyunbileg ;
Tsakok, Maria T. ;
Arteta, Carlos ;
Declerck, Jerome ;
Kadir, Timor ;
Pickup, Lyndsey ;
Gleeson, Fergus ;
Oudkerk, Matthijs .
LUNG CANCER, 2021, 154 :1-4
[38]   Performance of alternative manual and automated deep learning segmentation techniques for the prediction of benign and malignant lung nodules [J].
Selby, Heather M. ;
Mukherjee, Pritam ;
Parham, Christopher ;
Malik, Sachin B. ;
Gevaert, Olivier ;
Napel, Sandy ;
Shah, Rajesh P. .
JOURNAL OF MEDICAL IMAGING, 2023, 10 (04)
[39]   ThyroidNet: A Deep Learning Network for Localization and Classification of Thyroid Nodules [J].
Chen, Lu ;
Chen, Huaqiang ;
Pan, Zhikai ;
Xu, Sheng ;
Lai, Guangsheng ;
Chen, Shuwen ;
Wang, Shuihua ;
Gu, Xiaodong ;
Zhang, Yudong .
CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2024, 139 (01) :361-382
[40]   Multi-Label Classification of Lung Diseases Using Deep Learning [J].
Irtaza, Muhammad ;
Ali, Arshad ;
Gulzar, Maryam ;
Wali, Aamir .
IEEE ACCESS, 2024, 12 :124062-124080