Localization of a nonlocal interaction

被引:8
作者
Laha U. [1 ]
Das S.K. [1 ]
Bhoi J. [2 ]
机构
[1] Department of Physics, National Institute of Technology, Jamshedpur, Jharkhand
[2] Department of Physics, Government College of Engineering, Kalahandi, Odisha
来源
Laha, Ujjwal (ujjwal.laha@gmail.com) | 1600年 / TUBITAK卷 / 41期
关键词
Elastic scattering phase shifts; Energy momentum-dependent local potential; Localization of separable interaction; Nucleon nucleon and alpha-nucleon systems; Phase function method;
D O I
10.3906/fiz-1704-23
中图分类号
学科分类号
摘要
A simple method for the localization of a separable nonlocal interaction is formulated in terms of Green's functions and the solutions with regular and irregular boundary conditions. The constructed energy-momentumdependent local potential with regular boundary condition is real while that for the irregular boundary condition is complex in nature. The phase function method is exploited to compute elastic scattering phases for the nucleon-nucleon and alpha-nucleon systems. Reasonable agreements in scattering phase shifts with experimental data are obtained, particularly, in the low energy range for the systems under consideration. The phase shifts for the imaginary parts of the potentials derived from the irregular solutions for the alpha-nucleon systems, however, give indications of resonances at very low energies.
引用
收藏
页码:447 / 462
页数:15
相关论文
共 45 条
  • [1] Levinson N., Phys. Rev., 75, (1949)
  • [2] Bargmann V., Phys. Rev., 75, pp. 301-303, (1949)
  • [3] Chadan K., Sabatier P.C., Inverse Problems in Quantum Scattering Theory, (1977)
  • [4] Abraham P.B., Morse H.E., Phys. Rev. A, 22, pp. 1333-1340, (1980)
  • [5] Gel'Fand I.M., Levitan B.M., Izv. Akad. Nauk SSSR, Ser. Mat., 15, pp. 309-360, (1951)
  • [6] Engl. Transl. Am. Math. Soc. Transl. Ser., 2, 1, pp. 253-304, (1955)
  • [7] Sukumar C.V., J. Phys. A: Math. Gen., 18, pp. 2937-2956, (1985)
  • [8] Pursey D.L., Phys. Rev. D, 33, pp. 2267-2279, (1986)
  • [9] Baye D., Phys. Rev. Lett., 58, pp. 2738-2741, (1987)
  • [10] Amado R.D., Phys. Rev. A, 37, pp. 2277-2279, (1988)