Imperfect homoclinic bifurcations

被引:22
作者
Glendinning, P. [1 ]
Abshagen, J. [1 ]
Mullin, T. [1 ]
机构
[1] Department of Mathematics, UMIST, P.O. Box 88, Manchester M60 1QD, United Kingdom
来源
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics | 2001年 / 64卷 / 3 II期
关键词
Homoclinic bifurcations;
D O I
10.1103/PhysRevE.64.036208
中图分类号
学科分类号
摘要
(Edited Abstract)
引用
收藏
页码:362081 / 362088
相关论文
共 33 条
[21]   Homoclinic bifurcations and chaotic dynamics for a piecewise linear system under a periodic excitation and a viscous damping [J].
Li, S. B. ;
Shen, C. ;
Zhang, W. ;
Hao, Y. X. .
NONLINEAR DYNAMICS, 2015, 79 (04) :2395-2406
[22]   Homoclinic bifurcations and chaotic dynamics of non-planar waves in axially moving beam subjected to thermal load [J].
Wu, Qiliang ;
Qi, Guoyuan .
APPLIED MATHEMATICAL MODELLING, 2020, 83 :674-682
[23]   Homoclinic and Big Bang Bifurcations of an Embedding of 1D Allee's Functions into a 2D Diffeomorphism [J].
Leonel Rocha, J. ;
Taha, Abdel-Kaddous ;
Fournier-Prunaret, D. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (09)
[24]   Quasiattractors and homoclinic tangencies [J].
Gonchenko, SV ;
Shilnikov, LP ;
Turaev, DV .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1997, 34 (2-4) :195-227
[25]   Frequency spanning homoclinic families [J].
Rom-Kedar, Vered .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2003, 8 (3-4) :149-169
[26]   Fractal geometry and dynamical bifurcations [J].
Moreira, Carlos Gustavo T. de A. .
PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL III, 2014, :647-659
[27]   Homoclinic branch switching: A numerical implementation of Lin's method [J].
Oldeman, BE ;
Champneys, AR ;
Krauskopf, B .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (10) :2977-2999
[28]   Multiscale analysis of defective multiple-Hopf bifurcations [J].
Luongo, A ;
Di Egidio, A ;
Paolone, A .
COMPUTERS & STRUCTURES, 2004, 82 (31-32) :2705-2722
[29]   Homoclinic saddle to saddle-focus transitions in 4D systems [J].
Kalia, Manu ;
Kuznetsov, Yuri A. ;
Meijer, Hil G. E. .
NONLINEARITY, 2019, 32 (06) :2024-2054
[30]   Ecological consequences of global bifurcations in some food chain models [J].
van Voorn, George A. K. ;
Kooi, Bob W. ;
Boer, Martin P. .
MATHEMATICAL BIOSCIENCES, 2010, 226 (02) :120-133