Relational sequence learning

被引:3
作者
Kersting, Kristian [1 ]
De Raedt, Luc [2 ]
Gutmann, Bernd [2 ]
Karwath, Andreas [3 ]
Landwehr, Niels [3 ]
机构
[1] CSAIL, Massachusetts Institute of Technology, Cambridge, MA 02139-4307
[2] Departement Computerwetenschappen, K.U. Leuven, Heverlee B-3001
[3] Machine Learning Lab., Institute for Computer Science, University of Freiburg, Freiburg 79110, Georges-Koehler Allee
来源
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | 2008年 / 4911 LNAI卷
关键词
Markov processes - Reinforcement learning;
D O I
10.1007/978-3-540-78652-8_2
中图分类号
学科分类号
摘要
Sequential behavior and sequence learning are essential to intelligence. Often the elements of sequences exhibit an internal structure that can elegantly be represented using relational atoms. Applying traditional sequential learning techniques to such relational sequences requires one either to ignore the internal structure or to live with a combinatorial explosion of the model complexity. This chapter briefly reviews relational sequence learning and describes several techniques tailored towards realizing this, such as local pattern mining techniques, (hidden) Markov models, conditional random fields, dynamic programming and reinforcement learning. © 2008 Springer-Verlag Berlin Heidelberg.
引用
收藏
页码:28 / 55
页数:27
相关论文
共 28 条
[1]  
Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J., Basic local alignment search toll, Journal of Molecular Biology, 215, 3, pp. 403-410, (1990)
[2]  
Bellman D.P., Dynamic Programming, (1957)
[3]  
Blockeel H., De Raedt L., Top-down Induction of First-order Logical Decision Trees, Artificial Intelligence, 101, 1-2, pp. 285-297, (1998)
[4]  
Bruynooghe M., De Raedt L., Lee S.D., Troncon R., Mining logical sequences. Technical report, Department of Computer Science, Katholieke Universiteit Leuven, (2007)
[5]  
Dietterich T., Ashenfelter A., Bulatov Y., Training conditional random fields via gradient tree boosting, Proc. 21st International Conf. on Machine Learning, pp. 217-224, (2004)
[6]  
Gorodkin J., Heyer L.J., Brunak S., Stormo G.D., Displaying the information contents of structural RNA alignments: The structure logos, CABIOS, 13, 6, pp. 583-586, (1997)
[7]  
Greenberg S., Using unix: Collected traces of 168 users, Research Report, (1988)
[8]  
Henikoff S., Henikoff J.G., Amino acid substitution matrices from protein blocks, Proc. Natl Acad. Sci, 89, pp. 10915-10919, (1992)
[9]  
Horvath T., Wrobel S., Bohnebeck U., Relational Instance-Based learning with Lists and Terms, Machine Learning Journal, 43, 1-2, pp. 53-80, (2001)
[10]  
Kersting K., De Raedt L., Raiko T., Logical Hidden Markov Models, Journal of Artificial Intelligence Research (JAIR), 25, pp. 425-456, (2006)