Finite-difference time-domain solution of light scattering and absorption by particles in an absorbing medium

被引:0
|
作者
Sun, Wenbo [1 ]
Loeb, Norman G. [1 ]
Fu, Qiang [1 ]
机构
[1] Center for Atmospheric Sciences, Hampton University, Hampton, VA 23668, United States
来源
Applied Optics | 2002年 / 41卷 / 27期
关键词
Boundary conditions - Computational methods - Dielectric materials - Error analysis - Finite difference method - Light absorption - Time domain analysis;
D O I
暂无
中图分类号
学科分类号
摘要
The three-dimensional (3-D) finite-difference time-domain (FDTD) technique has been extended to simulate light scattering and absorption by nonspherical particles embedded in all absorbing dielectric medium. A uniaxial perfectly matched layer (UPML) absorbing boundary condition is used to truncate the computational domain. When computing the single-scattering properties of a particle in an absorbing dielectric medium, we derive the single-scattering properties including scattering phase functions, extinction, and absorption efficiencies using a volume integration of the internal field. A Mie solution for light scattering and absorption by spherical particles in an absorbing medium is used to examine the accuracy of the 3-D UPML FDTD code. It is found that the errors in the extinction and absorption efficiencies from the 3-D UPML FDTD are less than ∼2%. The errors in the scattering phase functions are typically less than ∼5%. The errors in the asymmetry factors are less than ∼0.1%. For light scattering by particles in free space, the accuracy of the 3-D UPML FDTD scheme is similar to a previous model [Appl. Opt. 38, 3141 (1999)]. © 2002 Optical Society of America.
引用
收藏
页码:5728 / 5743
相关论文
共 50 条
  • [31] Generalized finite-difference time-domain algorithm
    Gao, Benqing
    Gandhi, Om.P.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 1993, 21 (03): : 31 - 36
  • [32] A SEMIVECTORIAL FINITE-DIFFERENCE TIME-DOMAIN METHOD
    HUANG, WP
    CHU, ST
    CHAUDHURI, SK
    IEEE PHOTONICS TECHNOLOGY LETTERS, 1991, 3 (09) : 803 - 806
  • [33] Finite-difference time-domain on the Cell/BE processor
    Xu, Meilian
    Thulasiraman, Parimala
    2008 IEEE INTERNATIONAL SYMPOSIUM ON PARALLEL & DISTRIBUTED PROCESSING, VOLS 1-8, 2008, : 3025 - 3032
  • [34] On the stability of the finite-difference time-domain method
    Remis, RF
    JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 163 (01) : 249 - 261
  • [35] Simulations of optoacoustic wave propagation in light-absorbing media using a finite-difference time-domain method
    Huang, DH
    Liao, CK
    Wei, CW
    Li, PC
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2005, 117 (05): : 2795 - 2801
  • [36] Simulations of optoacoustic wave propagation in light-absorbing media using a finite-difference time-domain method
    Huang, Deng-Huei
    Liao, Chao-Kang
    Wei, Chen-Wei
    Li, Pai-Chi
    Journal of the Acoustical Society of America, 2005, 117 (05): : 2795 - 2801
  • [37] A NEW FORMULATION OF ABSORBING BOUNDARY-CONDITIONS FOR FINITE-DIFFERENCE TIME-DOMAIN METHOD
    WANG, PY
    KOZAKI, S
    OHKI, M
    YABE, T
    IEICE TRANSACTIONS ON ELECTRONICS, 1994, E77C (11) : 1726 - 1730
  • [38] Numerical solution of Maxwell equations by a finite-difference time-domain method in a medium with frequency and spatial dispersion
    Potravkin, N. N.
    Perezhogin, I. A.
    Makarov, V. A.
    PHYSICAL REVIEW E, 2012, 86 (05):
  • [39] FINITE-DIFFERENCE TIME-DOMAIN MODELING OF LIGHT SCATTERING FROM BIOLOGICAL CELLS CONTAINING GOLD NANOPARTICLES
    Tanev, Stoyan
    Tuchin, Valery V.
    Paddon, Paul
    PHOTON-BASED NANOSCIENCE AND NANOBIOTECHNOLOGY, 2006, 239 : 97 - 119
  • [40] Accelerating simulations of light scattering based on Finite-Difference Time-Domain method with general purpose GPUs
    Balevic, A.
    Rockstroh, L.
    Tausendfreund, A.
    Patzelt, S.
    Goch, G.
    Simon, S.
    CSE 2008:11TH IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING, PROCEEDINGS, 2008, : 327 - +