Multi-Agent Deep Reinforcement Learning for Distributed Resource Management in Wirelessly Powered Communication Networks

被引:0
|
作者
Hwang, Sangwon [1 ]
Kim, Hanjin [2 ]
Lee, Hoon [3 ]
Lee, Inkyu [1 ]
机构
[1] School of Electrical Engineering, Korea University, Seoul, Korea, Republic of
[2] Samsung Research, Samsung Electronics Co. Ltd., Seoul, Korea, Republic of
[3] Department of Information and Communications Engineering, Pukyong National University, Busan, Korea, Republic of
来源
IEEE Transactions on Vehicular Technology | 2020年 / 69卷 / 11期
关键词
Deep learning - Multi agent systems - Resource allocation - Telecommunication networks;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:14055 / 14060
相关论文
共 50 条
  • [31] Distributed interference coordination based on multi-agent deep reinforcement learning
    Liu T.
    Luo Y.
    Yang C.
    Tongxin Xuebao/Journal on Communications, 2020, 41 (07): : 38 - 48
  • [32] Distributed Task Offloading based on Multi-Agent Deep Reinforcement Learning
    Hu, Shucheng
    Ren, Tao
    Niu, Jianwei
    Hu, Zheyuan
    Xing, Guoliang
    2021 17TH INTERNATIONAL CONFERENCE ON MOBILITY, SENSING AND NETWORKING (MSN 2021), 2021, : 575 - 583
  • [33] Multi-agent Deep Reinforcement Learning for Spectrum and Air Traffic Management in UAM with Resource Constraints
    Apaza, Rafael D.
    Li, Hongxiang
    Han, Ruixuan
    Knoblock, Eric
    2023 IEEE/AIAA 42ND DIGITAL AVIONICS SYSTEMS CONFERENCE, DASC, 2023,
  • [34] Cooperative Multi-Agent Deep Reinforcement Learning for Resource Management in Full Flexible VHTS Systems
    Ortiz-Gomez, Flor G.
    Tarchi, Daniele
    Martinez, Ramon
    Vanelli-Coralli, Alessandro
    Salas-Natera, Miguel A.
    Landeros-Ayala, Salvador
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2022, 8 (01) : 335 - 349
  • [35] Multi-Agent Reinforcement Learning for Slicing Resource Allocation in Vehicular Networks
    Cui, Yaping
    Shi, Hongji
    Wang, Ruyan
    He, Peng
    Wu, Dapeng
    Huang, Xinyun
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (02) : 2005 - 2016
  • [36] Multi-agent reinforcement learning for intelligent resource allocation in IIoT networks
    Rosenberger, Julia
    Urlaub, Michael
    Schramm, Dieter
    2021 IEEE GLOBAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INTERNET OF THINGS (GCAIOT), 2021, : 118 - 119
  • [37] Multi-agent Deep Reinforcement Learning for Distributed Energy Management and Strategy Optimization of Microgrid Market
    Fang, Xiaohan
    Zhao, Qiang
    Wang, Jinkuan
    Han, Yinghua
    Li, Yuchun
    SUSTAINABLE CITIES AND SOCIETY, 2021, 74
  • [38] Distributed Multi-Agent Empowered Resource Allocation in Deep Edge Networks
    Gong, Yongkang
    Wang, Jingjing
    Yao, Haipeng
    IWCMC 2021: 2021 17TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE (IWCMC), 2021, : 974 - 979
  • [39] Multi-agent systems on sensor networks: A distributed reinforcement learning approach
    Tham, CK
    Renaud, JC
    PROCEEDINGS OF THE 2005 INTELLIGENT SENSORS, SENSOR NETWORKS & INFORMATION PROCESSING CONFERENCE, 2005, : 423 - 429
  • [40] Intelligent Resource Allocation for Train-to-Train Communication: A Multi-Agent Deep Reinforcement Learning Approach
    Zhao, Junhui
    Zhang, Yang
    Nie, Yiwen
    Liu, Jin
    IEEE ACCESS, 2020, 8 : 8032 - 8040