Synthesis and luminescence properties of α-NaYF4:Eu3+ red phosphors under different annealing temperature

被引:0
作者
School of Materials Science and Engineering, Nanchang University, Nanchang [1 ]
330031, China
不详 [2 ]
330099, China
机构
[1] School of Materials Science and Engineering, Nanchang University, Nanchang
[2] School of Science, Nanchang Institute of Technology, Nanchang
来源
Faguang Xuebao | / 5卷 / 502-507期
关键词
Annealing; Luminescence; Solvothermal method; α-NaYF[!sub]4[!/sub] nanocrystal;
D O I
10.3788/fgxb20153605.0502
中图分类号
学科分类号
摘要
α-NaYF4:5%Eu3+ red phosphors were prepared by the solvothermal method. The crystal structure, morphology, luminescence properties and the chromaticity coordinates(CIE) were discussed under different annealing temperature, and three samples of them were coated with SiO2 before annealed in air. It is found that the forbidden 5D0→7F0 transition emerges after annealing treatment, and all the characteristic emission peaks of Eu3+ are enhanced with the increasing of annealing temperature, correspondingly the CIE turns to red. But the nanoparticles reunite each other under high annealing temperature, and the tendency of CIE turning to red is slower. Based on the results of asymmetric ratio σ, we consider the appearance of 5D0→7F0 transition is from Eu3+ deviating from the inversion symmetry center. ©, 2015, Chines Academy of Sciences. All right reserved.
引用
收藏
页码:502 / 507
页数:5
相关论文
共 18 条
  • [1] Li S.W., Zhang X., Hou Z.Y., Et al., Enhanced emission of ultra-small-sized LaF<sub>3</sub>:RE<sup>3+</sup> (RE=Eu, Tb) nanoparticles through 1,2,4,5-benzenetetracarboxylic acid sensitization, Nanoscale, 4, 18, pp. 5619-5626, (2012)
  • [2] Li Z.Q., Li X.D., Liu Q.Q., Et al., Core/shell structured NaYF<sub>4</sub>:Yb<sup>3+</sup>/Er<sup>3+</sup>/Gd<sup>3+</sup> nanorods with Au nanoparticles or shells for flexible amorphous silicon solar cells, Nanotechnology, 23, 2, (2012)
  • [3] Yu D.C., Huang X.Y., Ye S., Et al., Three-photon near-infrared quantum splitting in β-NaYF<sub>4</sub>:Ho<sup>3+</sup>, Appl. Phys. Lett., 99, 16, (2011)
  • [4] Zhou S.S., Deng K.M., Wei X.T., Et al., Upconversion luminescence of NaYF<sub>4</sub>:Yb<sup>3+</sup>, Er<sup>3+</sup> for temperature sensing, Opt. Commun., 291, pp. 138-142, (2013)
  • [5] Liu Q., Sun Y., Yang T.S., Et al., Sub-10 nm hexagonal lanthanide-doped NaLuF<sub>4</sub> upconversion nanocrystals for sensitive bioimaging in vivo, J. Am. Chem. Soc., 133, 43, pp. 17122-17125, (2011)
  • [6] Zhou J.J., Chen G.X., Wu E., Et al., Ultrasensitive polarized up-conversion of Tm<sup>3+</sup>-Yb<sup>3+</sup> doped β-NaYF<sub>4</sub> single nanorod, Nano Lett., 13, 5, pp. 2241-2246, (2013)
  • [7] Yi G.S., Chow G.M., Synthesis of hexagonal-phase NaYF<sub>4</sub>:Yb, Er and NaYF<sub>4</sub>:Yb, Tm nanocrystals with efficient up-conversion fluorescence, Adv. Funct. Mater., 16, 18, pp. 2324-2329, (2006)
  • [8] Lecuna C.R., Rodriguez R.M., Valiente R., Et al., Origin of the high upconversion green luminescence efficiency in β-NaYF<sub>4</sub>:2%Er<sup>3+</sup>, 20%Yb<sup>3+</sup>, Chem. Mater., 23, 15, pp. 3442-3448, (2011)
  • [9] Chen X.P., Huang X.Y., Zhang Q.Y., Concentration-dependent near-infrared quantum cutting in NaYF<sub>4</sub>:Pr<sup>3+</sup> phosphor, J. Appl. Phys., 106, 6, pp. 63518-63521, (2009)
  • [10] Santana-Alonso A., Mendez-Ramos J., Yanes A.C., Et al., Up-conversion in sol-gel derived nano-glass-ceramics comprising NaYF<sub>4</sub> nano-crystals doped with Yb<sup>3+</sup>, Ho<sup>3+</sup> and Tm<sup>3+</sup>, Opt. Mater., 32, 9, pp. 903-908, (2010)