A semi-analytical approach for dynamic responses of monopile-supported offshore wind turbines subjected to accidental loads

被引:0
|
作者
Hammad, Ahmed [1 ]
Yu, Zhaolong [1 ]
机构
[1] Norwegian Univ Sci & Technol NTNU, Dept Marine Technol, Trondheim, Norway
关键词
Offshore wind turbine; Accidental loads; Ship collision; Slamming; Rayleigh-Ritz method; Soil-structure interactions; Dynamic responses; ENERGY; MODEL;
D O I
10.1016/j.apor.2024.104251
中图分类号
P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Offshore wind energy is leading the way in sustainable energy generation. Offshore wind turbines (OWTs) need to be designed to withstand extreme or accidental loads in Ultimate Limit States (ULS) and Accidental Limit States (ALS), whereby high order eigenmodes may become significant. This paper introduces a semi-analytical approach for efficient and reliable analysis of the dynamic responses of monopile-supported OWTs subjected to accidental loads. A Rayleigh-Ritz solution is initially adopted to determine the high-order natural frequencies and eigenmodes of monopile OWTs, explicitly considering tapered towers and soil-pile interactions. Dynamic responses of OWTs are then calculated depending on the interaction schemes between accidental loads and the structures, e.g. soft contact loads (e.g. slamming, wind) and hard contact loads (e.g. ship collisions, ice impact). For soft contact loading conditions, the loads are considered independent of turbine responses, and the transient dynamic response is computed using the classical modal superposition method. While for hard contact loading conditions, the load actions depend on the contact stiffnesses and responses of the interacting bodies. A numerical contact algorithm is thus developed, and numerical iterations are performed to ensure convergence. The proposed approach is applied to the DTU 10 MW monopile-supported OWT subjected to extreme water slamming and ship collisions, respectively as example applications of soft and hard contact scenarios. The results are verified against nonlinear finite element analysis using USFOS and discussed with respect to the turbine natural frequencies and eigenmodes, contact forces and dynamic responses. A parametric analysis is conducted for shipOWT collisions, exploring different impact scenarios by varying ship sizes, contact stiffnesses, and initial impact velocities. The proposed approach can serve as a promising tool for accidental load response analysis and the design of monopile OWTs.
引用
收藏
页数:24
相关论文
共 43 条
  • [41] MONOPILE-SUPPORTED OFFSHORE WIND TURBINE ULTIMATE LIMIT STATE DESIGN FORMAT FROM A STRUCTURAL RELIABILITY POINT' OF VIEW - IMPACT OF UNCERTAINTIES IN LOADS AND STRENGTH ON THE IMPLIED SAFETY LEVEL
    Amlashi, Hadi
    PROCEEDINGS OF ASME 2023 42ND INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE & ARCTIC ENGINEERING, OMAE2023, VOL 2, 2023,
  • [42] Numerical modelling and dynamic response analysis of a 10 MW semi-submersible floating offshore wind turbine subjected to ship collision loads
    Yu, Zhaolong
    Amdahl, Jorgen
    Rypestol, Martin
    Cheng, Zhengshun
    RENEWABLE ENERGY, 2022, 184 : 677 - 699
  • [43] Dynamic responses of a rough road comprising dry and saturated layers subjected to moving-vibratory elliptical traffic load: Insights from a GMM-based semi-analytical solution
    Ren, Pengli
    Li, Lin
    Chen, Zhang-Long
    Gong, Weibing
    Li, Jingpei
    COMPUTERS AND GEOTECHNICS, 2024, 172