A semi-analytical approach for dynamic responses of monopile-supported offshore wind turbines subjected to accidental loads

被引:0
|
作者
Hammad, Ahmed [1 ]
Yu, Zhaolong [1 ]
机构
[1] Norwegian Univ Sci & Technol NTNU, Dept Marine Technol, Trondheim, Norway
关键词
Offshore wind turbine; Accidental loads; Ship collision; Slamming; Rayleigh-Ritz method; Soil-structure interactions; Dynamic responses; ENERGY; MODEL;
D O I
10.1016/j.apor.2024.104251
中图分类号
P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Offshore wind energy is leading the way in sustainable energy generation. Offshore wind turbines (OWTs) need to be designed to withstand extreme or accidental loads in Ultimate Limit States (ULS) and Accidental Limit States (ALS), whereby high order eigenmodes may become significant. This paper introduces a semi-analytical approach for efficient and reliable analysis of the dynamic responses of monopile-supported OWTs subjected to accidental loads. A Rayleigh-Ritz solution is initially adopted to determine the high-order natural frequencies and eigenmodes of monopile OWTs, explicitly considering tapered towers and soil-pile interactions. Dynamic responses of OWTs are then calculated depending on the interaction schemes between accidental loads and the structures, e.g. soft contact loads (e.g. slamming, wind) and hard contact loads (e.g. ship collisions, ice impact). For soft contact loading conditions, the loads are considered independent of turbine responses, and the transient dynamic response is computed using the classical modal superposition method. While for hard contact loading conditions, the load actions depend on the contact stiffnesses and responses of the interacting bodies. A numerical contact algorithm is thus developed, and numerical iterations are performed to ensure convergence. The proposed approach is applied to the DTU 10 MW monopile-supported OWT subjected to extreme water slamming and ship collisions, respectively as example applications of soft and hard contact scenarios. The results are verified against nonlinear finite element analysis using USFOS and discussed with respect to the turbine natural frequencies and eigenmodes, contact forces and dynamic responses. A parametric analysis is conducted for shipOWT collisions, exploring different impact scenarios by varying ship sizes, contact stiffnesses, and initial impact velocities. The proposed approach can serve as a promising tool for accidental load response analysis and the design of monopile OWTs.
引用
收藏
页数:24
相关论文
共 43 条
  • [1] Performance analysis of monopile-supported wind turbines subjected to wind and operation loads
    Xiao, Shaohui
    Lin, Kun
    Liu, Hongjun
    Zhou, Annan
    RENEWABLE ENERGY, 2021, 179 : 842 - 858
  • [2] Identification of equivalent wind and wave loads for monopile-supported offshore wind turbines in operating condition
    Liang, Jun
    Fu, Yuhao
    Wang, Ying
    Ou, Jinping
    RENEWABLE ENERGY, 2024, 237
  • [3] Seismic response of monopile-supported offshore wind turbines under combined wind, wave and hydrodynamic loads at scoured sites
    Liang, Fayun
    Yuan, Zhouchi
    Liang, Xuan
    Zhang, Hao
    COMPUTERS AND GEOTECHNICS, 2022, 144
  • [4] Constructing simplified models for dynamic analysis of monopile-supported offshore wind turbines
    Liang, Jun
    Kato, Bence
    Wang, Ying
    OCEAN ENGINEERING, 2023, 271
  • [5] Modelling damping sources in monopile-supported offshore wind turbines
    Chen, Chao
    Duffour, Philippe
    WIND ENERGY, 2018, 21 (11) : 1121 - 1140
  • [6] Lateral responses of monopile-supported offshore wind turbines in sands under combined effects of scour and earthquakes
    Jiang, Wenyu
    Lin, Cheng
    SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2022, 155
  • [7] Fatigue life sensitivity of monopile-supported offshore wind turbines to damping
    Rezaei, Ramtin
    Fromme, Paul
    Duffour, Philippe
    RENEWABLE ENERGY, 2018, 123 : 450 - 459
  • [8] Concurrent wind, wave and current loads on a monopile-supported offshore wind turbine
    Buljac, Andrija
    Kozmar, Hrvoje
    Yang, Wenxian
    Kareem, Ahsan
    ENGINEERING STRUCTURES, 2022, 255
  • [9] Seismic responses of monopile-supported offshore wind turbines in soft clays under scoured conditions
    Jiang, Wenyu
    Lin, Cheng
    Sun, Min
    SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2021, 142 (142)
  • [10] Importance of higher modes for dynamic soil structure interaction of monopile-supported offshore wind turbines
    Sah, Upendra Kumar
    Yang, Jun
    EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS, 2024, 53 (06) : 2006 - 2031