Carbon market risk estimation using quantum conditional generative adversarial network and amplitude estimation

被引:5
作者
Zhou, Xiyuan [1 ]
Zhao, Huan [2 ]
Cao, Yuji [3 ]
Fei, Xiang [4 ]
Liang, Gaoqi [5 ]
Zhao, Junhua [1 ,3 ]
机构
[1] Chinese Univ Hong Kong, Sch Sci & Engn, Shenzhen 518100, Peoples R China
[2] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
[3] Shenzhen Inst Artificial Intelligence & Robot Soc, Ctr Crowd Intelligence, Shenzhen, Guangdong, Peoples R China
[4] Chinese Univ Hong Kong, Sch Data Sci, Shenzhen, Peoples R China
[5] Harbin Inst Technol, Sch Mech Engn & Automat, Shenzhen, Peoples R China
来源
ENERGY CONVERSION AND ECONOMICS | 2024年 / 5卷 / 04期
基金
中国国家自然科学基金;
关键词
carbon market; quantum amplitude estimation; quantum conditional generative adversarial networks; risk estimation;
D O I
10.1049/enc2.12122
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Accurately and efficiently estimating the carbon market risk is paramount for ensuring financial stability, promoting environmental sustainability, and facilitating informed decision-making. Although classical risk estimation methods are extensively utilized, the implicit pre-assumptions regarding distribution are predominantly contained and challenging to balance accuracy and computational efficiency. A quantum computing-based carbon market risk estimation framework is proposed to address this problem with the quantum conditional generative adversarial network-quantum amplitude estimation (QCGAN-QAE) algorithm. Specifically, quantum conditional generative adversarial network (QCGAN) is employed to simulate the future distribution of the generated return rate, whereas quantum amplitude estimation (QAE) is employed to measure the distribution. Moreover, the quantum circuit of the QCGAN improved by reordering the data interaction layer and data simulation layer is coupled with the introduction of the quantum fully connected layer. The binary search method is incorporated into the QAE to bolster the computational efficiency. The simulation results based on the European Union Emissions Trading System reveals that the proposed framework markedly enhances the efficiency and precision of value-at-risk and conditional value-at-risk compared to original methods.
引用
收藏
页码:193 / 210
页数:18
相关论文
共 47 条
[1]  
Brassard G., 2002, Contemp. Math., V305, P53, DOI 10.1090/conm/305/05215
[2]   Fast and explainable warm-start point learning for AC Optimal Power Flow using decision tree [J].
Cao, Yuji ;
Zhao, Huan ;
Liang, Gaoqi ;
Zhao, Junhua ;
Liao, Huanxin ;
Yang, Chao .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2023, 153
[3]   Linear-layer-enhanced quantum long short-term memory for carbon price forecasting [J].
Cao, Yuji ;
Zhou, Xiyuan ;
Fei, Xiang ;
Zhao, Huan ;
Liu, Wenxuan ;
Zhao, Junhua .
QUANTUM MACHINE INTELLIGENCE, 2023, 5 (02)
[4]   QUANTUM LONG SHORT-TERM MEMORY [J].
Chen, Samuel Yen-Chi ;
Yoo, Shinjae ;
Fang, Yao-Lung L. .
2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, :8622-8626
[5]   Generative Adversarial Networks An overview [J].
Creswell, Antonia ;
White, Tom ;
Dumoulin, Vincent ;
Arulkumaran, Kai ;
Sengupta, Biswa ;
Bharath, Anil A. .
IEEE SIGNAL PROCESSING MAGAZINE, 2018, 35 (01) :53-65
[6]  
Daskalakis G., 2014, Are the European Carbon Markets Efficient?
[7]  
Dritsaki C., 2018, Int. J. Energy Econ. Policy, V8
[8]   On Depth, Robustness and Performance Using the Data Re-Uploading Single-Qubit Classifier [J].
Easom-Mccaldin, Philip ;
Bouridane, Ahmed ;
Belatreche, Ammar ;
Jiang, Richard .
IEEE ACCESS, 2021, 9 :65127-65139
[9]   Credit Risk Analysis Using Quantum Computers [J].
Egger, Daniel J. ;
Garcia Gutierrez, Ricardo ;
Cahue Mestre, Jordie ;
Woerner, Stefan .
IEEE TRANSACTIONS ON COMPUTERS, 2021, 70 (12) :2136-2145
[10]   Quantum Computing for Finance: State-of-the-Art and Future Prospects [J].
Egger D.J. ;
Gambella C. ;
Marecek J. ;
McFaddin S. ;
Mevissen M. ;
Raymond R. ;
Simonetto A. ;
Woerner S. ;
Yndurain E. .
Simonetto, Andrea (andrea.simonetto@ibm.com), 1600, Institute of Electrical and Electronics Engineers Inc. (01)