共 9 条
- [1] Cui J., Pei J.Y., Generalized MacWilliams identities forZ4-linear codes, IEEE Trans. Inform. Theory, 50, (2004)
- [2] Hammons A.R., Kumar P.V., Calderbank A.R., Sloane N.J.A., Sole P., The Z4-linearity of Kerdock, Preparata, Goethals and related codes, IEEE Trans. Inform. Theory, 40, pp. 301-319, (1994)
- [3] Li Y., Chen L.S., The MacWilliams identity of the linear codes over the ring F<sub>p</sub> + uF<sub>p</sub>, Acta Sci. Nat. Univ. NanKaiensis, 43, pp. 78-84, (2010)
- [4] Liang H., Tang Y.S., The MacWilliams identity of the linear codes over the ring F<sub>2</sub> + uF<sub>2</sub> + u2F<sub>2</sub>, Math. Pract. Theor., 40, pp. 200-205, (2010)
- [5] Shi M.J., Zhu S.X., Li P., The MacWilliams identity of the linear codes over the ring F<sub>2</sub>+vF<sub>2</sub>, Appl. Res. Comput., 25, pp. 1134-1135, (2008)
- [6] Shiromoto K., A new MacWillams type identity for linear codes, Hokkaido Math. J., 25, pp. 651-656, (1996)
- [7] Wan Z.X., Quaternary Codes, pp. 25-70, (1997)
- [8] Xu X.F., Mao Q.L., The MacWilliams identity of the linear codes over the ring F<sub>p</sub> + uF<sub>p</sub> + u2F<sub>p</sub>, J. Math., 33, pp. 519-524, (2013)
- [9] Yildiz B., Karadeniz S., Linear codes over F<sub>2</sub>+uF<sub>2</sub>+vF<sub>2</sub>+uvF<sub>2</sub>, Designs Codes Cryptogr., 54, pp. 61-81, (2010)