SFDA-T: A novel source-free domain adaptation method with strong generalization ability for fault diagnosis

被引:2
|
作者
Wang, Jie [1 ]
Shao, Haidong [1 ]
Xiao, Yiming [1 ]
Liu, Bin [2 ]
机构
[1] Hunan Univ, Coll Mech & Vehicle Engn, Changsha 410082, Peoples R China
[2] Univ Strathclyde, Dept Management Sci, Glasgow G1 1XQ, Scotland
关键词
Source-free domain adaptation; Transformer; Generalization ability; Fault diagnosis;
D O I
10.1016/j.aei.2024.102903
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Currently, source free domain adaptation (SFDA) methods are employed to address the issue of inaccessible source domain data (SDD) in transfer learning. However, existing SFDA methods often suffer from overfitting to specific domains, leading to poor generalization ability in the target domain. To address these challenges, this paper proposes a novel SFDA method named SFDA-T for fault diagnosis. Specifically, a Transformer-CNN-based feature extractor is constructed, to mine the transferable feature knowledge of faults in the SDD. The approach reduces the overfitting of the model to domain-specific information and improves model's generalization ability. In addition, the feature attention loss is designed to calculate attention weights of the sample features to increase the model's attention to the crucial feature regions in the target domain. A source similarity guided exponential loss is developed to guide target samples based on the decision boundaries of the source domain, facilitating cluster alignment of target sample categories and expanding distances between different categories. Furthermore, a self-training pseudo-labeling constraint is employed to reduce the effect of incorrect label matching and further constrain the model. The results of the experiments on gearboxes and bearings indicate that the proposed method achieves high fault diagnosis accuracy while effectively decoupling from SDD.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] UPL-SFDA: Uncertainty-Aware Pseudo Label Guided Source-Free Domain Adaptation for Medical Image Segmentation
    Wu, Jianghao
    Wang, Guotai
    Gu, Ran
    Lu, Tao
    Chen, Yinan
    Zhu, Wentao
    Vercauteren, Tom
    Ourselin, Sebastien
    Zhang, Shaoting
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (12) : 3932 - 3943
  • [32] Source-free cross-domain fault diagnosis of rotating machinery using the Siamese framework
    Ma, Chenyu
    Tu, Xiaotong
    Zhou, Guanxing
    Huang, Yue
    Ding, Xinghao
    KNOWLEDGE-BASED SYSTEMS, 2024, 300
  • [33] An Entropy-Based Pseudo-Label Mixup Method for Source-Free Domain Adaptation
    Chen, Qinghan
    Lu, Zhiyang
    Cheng, Ming
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT II, 2025, 15032 : 105 - 117
  • [34] A novel fault diagnosis method for analog circuits with noise immunity and generalization ability
    Tianyu Gao
    Jingli Yang
    Shouda Jiang
    Neural Computing and Applications, 2021, 33 : 10537 - 10550
  • [35] A novel fault diagnosis method for analog circuits with noise immunity and generalization ability
    Gao, Tianyu
    Yang, Jingli
    Jiang, Shouda
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (16): : 10537 - 10550
  • [36] A progressive multi-source domain adaptation method for bearing fault diagnosis
    Zheng, Xiaorong
    He, Zhiwei
    Nie, Jiahao
    Li, Ping
    Dong, Zhekang
    Gao, Mingyu
    APPLIED ACOUSTICS, 2024, 216
  • [37] Source free unsupervised domain adaptation for electro-mechanical actuator fault diagnosis
    Jianyu WANG
    Heng ZHANG
    Qiang MIAO
    Chinese Journal of Aeronautics, 2023, 36 (04) : 252 - 267
  • [38] Source free unsupervised domain adaptation for electro-mechanical actuator fault diagnosis
    Jianyu WANG
    Heng ZHANG
    Qiang MIAO
    Chinese Journal of Aeronautics , 2023, (04) : 252 - 267
  • [39] Source free unsupervised domain adaptation for electro-mechanical actuator fault diagnosis
    Wang, Jianyu
    Zhang, Heng
    Miao, Qiang
    CHINESE JOURNAL OF AERONAUTICS, 2023, 36 (04) : 252 - 267
  • [40] Towards Prediction Constraints: A Novel Domain Adaptation Method for Machine Fault Diagnosis
    Jiao, Jinyang
    Liang, Kaixuan
    Ding, Chuancang
    Lin, Jing
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (10) : 7198 - 7207