Cold electrons at comet 67P/Churyumov-Gerasimenko

被引:0
|
作者
机构
[1] [1,Engelhardt, I.A.D.
[2] Eriksson, A.I.
[3] Vigren, E.
[4] Valliéres, X.
[5] Rubin, M.
[6] Gilet, N.
[7] Henri, P.
来源
| 1600年 / EDP Sciences卷 / 616期
基金
英国科学技术设施理事会;
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Context. The electron temperature of the plasma is one important aspect of the environment. Electrons created by photoionization or impact ionization of atmospheric gas have energies ∼10 eV. In an active comet coma, the gas density is high enough for rapid cooling of the electron gas to the neutral gas temperature (a few hundred kelvin). How cooling evolves in less active comets has not been studied before. Aims. We aim to investigate how electron cooling varied as comet 67P/Churyumov-Gerasimenko changed its activity by three orders of magnitude during the Rosetta mission. Methods. We used in situ data from the Rosetta plasma and neutral gas sensors. By combining Langmuir probe bias voltage sweeps and mutual impedance probe measurements, we determined at which time cold electrons formed at least 25% of the total electron density. We compared the results to what is expected from simple models of electron cooling, using the observed neutral gas density as input. Results. We demonstrate that the slope of the Langmuir probe sweep can be used as a proxy for the presence of cold electrons. We show statistics of cold electron observations over the two-year mission period. We find cold electrons at lower activity than expected by a simple model based on free radial expansion and continuous loss of electron energy. Cold electrons are seen mainly when the gas density indicates that an exobase may have formed. Conclusions. Collisional cooling of electrons following a radial outward path is not sufficient to explain the observations. We suggest that the ambipolar electric field keeps electrons in the inner coma for a much longer time, giving them time to dissipate energy by collisions with the neutrals. We conclude that better models are required to describe the plasma environment of comets. They need to include at least two populations of electrons and the ambipolar field. © 2018 ESO.
引用
收藏
相关论文
共 50 条
  • [21] The dust activity of Comet 67P/Churyumov-Gerasimenko
    Weiler, M
    Knollenberg, J
    Rauer, H
    NEW ROSETTA TARGETS: OBSERVATIONS, SIMULATIONS AND INSTRUMENT PERFORMANCES, 2004, 311 : 37 - 46
  • [22] Distributed glycine in comet 67P/Churyumov-Gerasimenko
    Hadraoui, K.
    Cottin, H.
    Ivanovski, S. L.
    Zapf, P.
    Altwegg, K.
    Benilan, Y.
    Biver, N.
    Della Corte, V
    Fray, N.
    Lasue, J.
    Merouane, S.
    Rotundi, A.
    Zakharov, V
    ASTRONOMY & ASTROPHYSICS, 2019, 630
  • [23] Electron acceleration at comet 67P/Churyumov-Gerasimenko
    Goldstein, R.
    Burch, J. L.
    Llera, K.
    Mokashi, P.
    Nilsson, H.
    Dokgo, K.
    Eriksson, A.
    Odelstad, E.
    Richter, I
    ASTRONOMY & ASTROPHYSICS, 2019, 630
  • [24] The Plasma Environment of Comet 67P/Churyumov-Gerasimenko
    Goetz, Charlotte
    Behar, Etienne
    Beth, Arnaud
    Bodewits, Dennis
    Bromley, Steve
    Burch, Jim
    Deca, Jan
    Divin, Andrey
    Eriksson, Anders, I
    Feldman, Paul D.
    Galand, Marina
    Gunell, Herbert
    Henri, Pierre
    Heritier, Kevin
    Jones, Geraint H.
    Mandt, Kathleen E.
    Nilsson, Hans
    Noonan, John W.
    Odelstad, Elias
    Parker, Joel W.
    Rubin, Martin
    Wedlund, Cyril Simon
    Stephenson, Peter
    Taylor, Matthew G. G. T.
    Vigren, Erik
    Vines, Sarah K.
    Volwerk, Martin
    SPACE SCIENCE REVIEWS, 2022, 218 (08)
  • [25] The primordial nucleus of comet 67P/Churyumov-Gerasimenko
    Davidsson, B. J. R.
    Sierks, H.
    Guettler, C.
    Marzari, F.
    Pajola, M.
    Rickman, H.
    A'Hearn, M. F.
    Auger, A. -T.
    El-Maarry, M. R.
    Fornasier, S.
    Gutierrez, P. J.
    Keller, H. U.
    Massironi, M.
    Snodgrass, C.
    Vincent, J. -B.
    Barbieri, C.
    Lamy, P. L.
    Rodrigo, R.
    Koschny, D.
    Barucci, M. A.
    Bertaux, J. -L.
    Bertini, I.
    Cremonese, G.
    Da Deppo, V.
    Debei, S.
    De Cecco, M.
    Feller, C.
    Fulle, M.
    Groussin, O.
    Hviid, S. F.
    Hoefner, S.
    Ip, W. -H.
    Jorda, L.
    Knollenberg, J.
    Kovacs, G.
    Kramm, J. -R.
    Kuehrt, E.
    Kueppers, M.
    La Forgia, F.
    Lara, L. M.
    Lazzarin, M.
    Lopez Moreno, J. J.
    Moissl-Fraund, R.
    Mottola, S.
    Naletto, G.
    Oklay, N.
    Thomas, N.
    Tubiana, C.
    ASTRONOMY & ASTROPHYSICS, 2016, 592
  • [26] Electron acceleration at comet 67P/Churyumov-Gerasimenko
    Goldstein, R.
    Burch, J.L.
    Llera, K.
    Mokashi, P.
    Nilsson, H.
    Dokgo, K.
    Eriksson, A.
    Odelstad, E.
    Richter, I.
    Astronomy and Astrophysics, 2019, 630
  • [27] The dust environment of Comet 67P/Churyumov-Gerasimenko
    Fulle, M
    Barbieri, C
    Cremonese, G
    Rauer, H
    Weiler, M
    Milani, G
    Ligustri, R
    NEW ROSETTA TARGETS: OBSERVATIONS, SIMULATIONS AND INSTRUMENT PERFORMANCES, 2004, 311 : 131 - 141
  • [28] Revisiting the magnetization of comet 67P/Churyumov-Gerasimenko
    Heinisch, P.
    Auster, H-U
    Richter, I
    Glassmeier, K. H.
    ASTRONOMY & ASTROPHYSICS, 2019, 630
  • [29] CME impact on comet 67P/Churyumov-Gerasimenko
    Edberg, Niklas J. T.
    Alho, M.
    Andre, M.
    Andrews, D. J.
    Behar, E.
    Burch, J. L.
    Carr, C. M.
    Cupido, E.
    Engelhardt, I. A. D.
    Eriksson, A. I.
    Glassmeier, K. -H.
    Goetz, C.
    Goldstein, R.
    Henri, P.
    Johansson, F. L.
    Koenders, C.
    Mandt, K.
    Moestl, C.
    Nilsson, H.
    Odelstad, E.
    Richter, I.
    Wedlund, C. Simon
    Wieser, G. Stenberg
    Szego, K.
    Vigren, E.
    Volwerk, M.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 462 : S45 - S56
  • [30] The Plasma Environment of Comet 67P/Churyumov-Gerasimenko
    Charlotte Goetz
    Etienne Behar
    Arnaud Beth
    Dennis Bodewits
    Steve Bromley
    Jim Burch
    Jan Deca
    Andrey Divin
    Anders I. Eriksson
    Paul D. Feldman
    Marina Galand
    Herbert Gunell
    Pierre Henri
    Kevin Heritier
    Geraint H. Jones
    Kathleen E. Mandt
    Hans Nilsson
    John W. Noonan
    Elias Odelstad
    Joel W. Parker
    Martin Rubin
    Cyril Simon Wedlund
    Peter Stephenson
    Matthew G. G. T. Taylor
    Erik Vigren
    Sarah K. Vines
    Martin Volwerk
    Space Science Reviews, 2022, 218