Optimizing front grid electrodes of flexible CIGS thin film solar cells with different shapes

被引:0
|
作者
Hu, Cheng [1 ]
Li, Kang [2 ]
Li, Xiaohong [1 ]
Li, Jie [2 ]
Sun, Fengbo [1 ]
Fan, Xiaopeng [2 ]
Yang, Tian [1 ]
Wang, Ruixiang [2 ]
Deng, Aidong [2 ]
机构
[1] Southwest Univ Sci & Technol, Sch Math & Phys, Joint Lab Extreme Condit Matter Properties, Mianyang 621010, Peoples R China
[2] Mianyang Haohua Solar Technol Co Ltd, Mianyang 621002, Peoples R China
关键词
Copper indium gallium selenide; Thin film solar cells; Metal grid; Optimal design; Conversion efficiency; ENERGY;
D O I
10.1016/j.solener.2024.113076
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
While using metal grid electrodes improves the performance of solar cells, it inevitably leads to frontal shading losses, series resistance losses, and losses due to lateral currents in the top layer. In this study, we analyze the influence of the front electrode grid line size parameters on the efficiency loss of copper indium gallium selenide (CIGS) thin-film solar cells and then use numerical analysis to obtain the optimal parameters for the design of the grid line size, and at the same time, explore the optimal design strategy for the grid line for non-conventional shaped solar cells. The experiments show that the photoelectric conversion efficiencies of the optimized rectangular solar cell samples are increased by 2.19% and 5.44%, respectively, over the two pre-optimized samples. The optimized design parameters can be used to improve the conversion efficiency of solar cell modules in commercial production, and the optimization method, which only modifies the relevant parameters of the grids, does not require the introduction of complex manufacturing methods in production, which can save costs and is easy to be extended to the production of different types of CIGS thin film solar cell modules in order to achieve the goal of improving efficiency.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Energy yield of all thin-film perovskite/CIGS tandem solar modules
    Langenhorst, Malte
    Sautter, Benjamin
    Schnnager, Raphael
    Lehr, Jonathan
    Ahlswede, Erik
    Powalla, Michael
    Lennnner, Uli
    Richards, Bryce S.
    Paetzold, Ulrich W.
    PROGRESS IN PHOTOVOLTAICS, 2019, 27 (04): : 290 - 298
  • [32] Photoelectrochemical solar (PES) cells with Cd1−xPbxSe polycrystalline thin film electrodes
    R. N. Mulik
    L. P. Deshmukh
    V. B. Patil
    Journal of Materials Science: Materials in Electronics, 2004, 15 : 335 - 340
  • [33] Characteristics of InGaP/GaAs double junction thin film solar cells on a flexible metallic substrate
    Zhao, Bin
    Tang, Xian-Sheng
    Huo, Wen-Xue
    Jiang, Yang
    Ma, Zi-Guang
    Wang, Lu
    Wang, Wen-Xin
    Chen, Hong
    Jia, Hai-Qiang
    SOLAR ENERGY, 2018, 174 : 703 - 708
  • [34] Transfer Printing Methods for Flexible Thin Film Solar Cells: Basic Concepts and Working Principles
    Lee, Chi Hwan
    Kim, Dong Rip
    Zheng, Xiaolin
    ACS NANO, 2014, 8 (09) : 8746 - 8756
  • [35] Improved CIGS thin-film solar cells by surface sulfurization using In2S3 and sulfur vapor
    Ohashi, D
    Nakada, T
    Kunioka, A
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2001, 67 (1-4) : 261 - 265
  • [36] Analysis of CIGS-based thin film tandem solar cell with ZnS buffer layers
    Farhood Rasouli
    Mohammad R. Madani
    Optical and Quantum Electronics, 2020, 52
  • [37] Analysis of CIGS-based thin film tandem solar cell with ZnS buffer layers
    Rasouli, Farhood
    Madani, Mohammad R.
    OPTICAL AND QUANTUM ELECTRONICS, 2020, 52 (11)
  • [38] Black body-like radiative cooling for flexible thin-film solar cells
    Lee, Eungkyu
    Luo, Tengfei
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2019, 194 : 222 - 228
  • [39] Exploration of CdMnTe thin film solar cells
    Chander, Subhash
    Dhaka, Mahendra Singh
    SOLAR ENERGY, 2019, 183 : 544 - 550
  • [40] Multiple Semiconductors Thin Film Solar Cells
    Castelletto, Stefania
    Boretti, Alberto
    NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2013, 5 (01) : 51 - 56