Anomaly prediction of Internet behavior based on generative adversarial networks

被引:0
|
作者
Wang, XiuQing [1 ,2 ,3 ]
An, Yang [1 ]
Hu, Qianwei [1 ]
机构
[1] College of Computer and Cyber Security, Hebei Normal University, Hebei, Shijiazhuang
[2] Hebei Provincial Key Laboratory of Network & Information Security, College of Computer and Cyber Security, Hebei, Shijiazhuang
[3] Hebei Provincial Engineering Research Center for Supply Chain Big Data Analytics & Data Security, Hebei Normal University, Hebei, Shijiazhuang
基金
中国国家自然科学基金;
关键词
Anomaly prediction; Deep learning; Generative adversarial networks; Internet behaviors;
D O I
10.7717/PEERJ-CS.2009
中图分类号
学科分类号
摘要
With the popularity of Internet applications, a large amount of Internet behavior log data is generated. Abnormal behaviors of corporate employees may lead to internet security issues and data leakage incidents. To ensure the safety of information systems, it is important to research on anomaly prediction of Internet behaviors. Due to the high cost of labeling big data manually, an unsupervised generative model–Anomaly Prediction of Internet behavior based on Generative Adversarial Networks (APIBGAN), which works only with a small amount of labeled data, is proposed to predict anomalies of Internet behaviors. After the input Internet behavior data is preprocessed by the proposed method, the data-generating generative adversarial network (DGGAN) in APIBGAN learns the distribution of real Internet behavior data by leveraging neural networks’ powerful feature extraction from the data to generate Internet behavior data with random noise. The APIBGAN utilizes these labeled generated data as a benchmark to complete the distance-based anomaly prediction. Three categories of Internet behavior sampling data from corporate employees are employed to train APIBGAN: (1) Online behavior data of an individual in a department. (2) Online behavior data of multiple employees in the same department. (3) Online behavior data of multiple employees in different departments. The prediction scores of the three categories of Internet behavior data are 87.23%, 85.13%, and 83.47%, respectively, and are above the highest score of 81.35% which is obtained by the comparison method based on Isolation Forests in the CCF Big Data & Computing Intelligence Contest (CCF-BDCI). The experimental results validate that APIBGAN predicts the outlier of Internet behaviors effectively through the GAN, which is composed of a simple three-layer fully connected neural networks (FNNs). We can use APIBGAN not only for anomaly prediction of Internet behaviors but also for anomaly prediction in many other applications, which have big data infeasible to label manually. Above all, APIBGAN has broad application prospects for anomaly prediction, and our work also provides valuable input for anomaly prediction-based GAN. © 2024 Wang et al.
引用
收藏
相关论文
共 50 条
  • [41] Face attribute editing based on generative adversarial networks
    Xiaoxia Song
    Mingwen Shao
    Wangmeng Zuo
    Cunhe Li
    Signal, Image and Video Processing, 2020, 14 : 1217 - 1225
  • [42] Prediction Method of Multiple Related Time Series Based on Generative Adversarial Networks
    Wu, Weijie
    Huang, Fang
    Kao, Yidi
    Chen, Zhou
    Wu, Qi
    INFORMATION, 2021, 12 (02) : 1 - 16
  • [43] DSAL-GAN: Denoising Based Saliency Prediction with Generative Adversarial Networks
    Mukherjee, Prerana
    Sharma, Manoj
    Makwana, Megh
    Singh, Ajay Pratap
    Upadhyay, Avinash
    Trivedi, Akkshita
    Lall, Brejesh
    Chaudhury, Santanu
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PREMI 2021, 2024, 13102 : 568 - 576
  • [44] A new method based on generative adversarial networks for multivariate time series prediction
    Qin, Xiwen
    Shi, Hongyu
    Dong, Xiaogang
    Zhang, Siqi
    EXPERT SYSTEMS, 2024, 41 (12)
  • [45] A Pedestrian Trajectory Prediction Method for Generative Adversarial Networks Based on Scene Constraints
    Ma, Zhongli
    An, Ruojin
    Liu, Jiajia
    Cui, Yuyong
    Qi, Jun
    Teng, Yunlong
    Sun, Zhijun
    Li, Juguang
    Zhang, Guoliang
    ELECTRONICS, 2024, 13 (03)
  • [46] Unsupervised anomaly detection for underwater gliders using generative adversarial networks
    Wu, Peng
    Harris, Catherine A.
    Salavasidis, Georgios
    Lorenzo-Lopez, Alvaro
    Kamarudzaman, Izzat
    Phillips, Alexander B.
    Thomas, Giles
    Anderlini, Enrico
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2021, 104
  • [47] Applying of Generative Adversarial Networks for Anomaly Detection in Industrial Control Systems
    Alabugin, Sergei K.
    Sokolov, Alexander N.
    2020 GLOBAL SMART INDUSTRY CONFERENCE (GLOSIC), 2020, : 199 - 203
  • [48] IoT-GAN: Anomaly Detection for Time Series in IoT Based on Generative Adversarial Networks
    Chen, Xiaofei
    Zhang, Shuo
    Jiang, Qiao
    Chen, Jiayuan
    Huang, Hejiao
    Gu, Chonglin
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2021, PT II, 2022, 13156 : 682 - 694
  • [49] Anomaly-Based Intrusion on IoT Networks Using AIGAN-a Generative Adversarial Network
    Liu, Zhipeng
    Hu, Junyi
    Liu, Yang
    Roy, Kaushik
    Yuan, Xiaohong
    Xu, Jinsheng
    IEEE ACCESS, 2023, 11 : 91116 - 91132
  • [50] Applications of Generative Adversarial Networks in Anomaly Detection: A Systematic Literature Review
    Sabuhi, Mikael
    Zhou, Ming
    Bezemer, Cor-Paul
    Musilek, Petr
    IEEE ACCESS, 2021, 9 : 161003 - 161029