Anomaly prediction of Internet behavior based on generative adversarial networks

被引:0
|
作者
Wang, XiuQing [1 ,2 ,3 ]
An, Yang [1 ]
Hu, Qianwei [1 ]
机构
[1] College of Computer and Cyber Security, Hebei Normal University, Hebei, Shijiazhuang
[2] Hebei Provincial Key Laboratory of Network & Information Security, College of Computer and Cyber Security, Hebei, Shijiazhuang
[3] Hebei Provincial Engineering Research Center for Supply Chain Big Data Analytics & Data Security, Hebei Normal University, Hebei, Shijiazhuang
基金
中国国家自然科学基金;
关键词
Anomaly prediction; Deep learning; Generative adversarial networks; Internet behaviors;
D O I
10.7717/PEERJ-CS.2009
中图分类号
学科分类号
摘要
With the popularity of Internet applications, a large amount of Internet behavior log data is generated. Abnormal behaviors of corporate employees may lead to internet security issues and data leakage incidents. To ensure the safety of information systems, it is important to research on anomaly prediction of Internet behaviors. Due to the high cost of labeling big data manually, an unsupervised generative model–Anomaly Prediction of Internet behavior based on Generative Adversarial Networks (APIBGAN), which works only with a small amount of labeled data, is proposed to predict anomalies of Internet behaviors. After the input Internet behavior data is preprocessed by the proposed method, the data-generating generative adversarial network (DGGAN) in APIBGAN learns the distribution of real Internet behavior data by leveraging neural networks’ powerful feature extraction from the data to generate Internet behavior data with random noise. The APIBGAN utilizes these labeled generated data as a benchmark to complete the distance-based anomaly prediction. Three categories of Internet behavior sampling data from corporate employees are employed to train APIBGAN: (1) Online behavior data of an individual in a department. (2) Online behavior data of multiple employees in the same department. (3) Online behavior data of multiple employees in different departments. The prediction scores of the three categories of Internet behavior data are 87.23%, 85.13%, and 83.47%, respectively, and are above the highest score of 81.35% which is obtained by the comparison method based on Isolation Forests in the CCF Big Data & Computing Intelligence Contest (CCF-BDCI). The experimental results validate that APIBGAN predicts the outlier of Internet behaviors effectively through the GAN, which is composed of a simple three-layer fully connected neural networks (FNNs). We can use APIBGAN not only for anomaly prediction of Internet behaviors but also for anomaly prediction in many other applications, which have big data infeasible to label manually. Above all, APIBGAN has broad application prospects for anomaly prediction, and our work also provides valuable input for anomaly prediction-based GAN. © 2024 Wang et al.
引用
收藏
相关论文
共 50 条
  • [31] A Framework for Anomaly Detection in IoT Networks Using Conditional Generative Adversarial Networks
    Ullah, Imtiaz
    Mahmoud, Qusay H.
    IEEE ACCESS, 2021, 9 : 165907 - 165931
  • [32] Anomaly detection of adversarial examples using class-conditional generative adversarial networks
    Wang, Hang
    Miller, David J.
    Kesidis, George
    COMPUTERS & SECURITY, 2023, 124
  • [33] Texture synthesis method based on generative adversarial networks
    Yu S.
    Han Z.
    Tang Y.
    Wu C.
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2018, 47 (02):
  • [34] Wireless signal enhancement based on generative adversarial networks
    Zhou, Xue
    Sun, Zhuo
    Wu, Hengmiao
    AD HOC NETWORKS, 2020, 103
  • [35] Multisensor Image Fusion based on Generative Adversarial Networks
    Lebedev, M. A.
    Komarov, D., V
    Vygolov, O. V.
    Vizilter, Yu. V.
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXV, 2019, 11155
  • [36] Multimodal Image Fusion Based on Generative Adversarial Networks
    Yang Xiaoli
    Lin Suzhen
    Lu Xiaofei
    Wang Lifang
    Li Dawei
    Wang Bin
    LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (16)
  • [37] Face attribute editing based on generative adversarial networks
    Song, Xiaoxia
    Shao, Mingwen
    Zuo, Wangmeng
    Li, Cunhe
    SIGNAL IMAGE AND VIDEO PROCESSING, 2020, 14 (06) : 1217 - 1225
  • [38] Exploring generative adversarial networks and adversarial training
    Sajeeda A.
    Hossain B.M.M.
    Int. J. Cogn. Comp. Eng., (78-89): : 78 - 89
  • [39] Rainfall prediction using generative adversarial networks with convolution neural network
    Venkatesh, R.
    Balasubramanian, C.
    Kaliappan, M.
    SOFT COMPUTING, 2021, 25 (06) : 4725 - 4738
  • [40] Design and Development of AD-CGAN: Conditional Generative Adversarial Networks for Anomaly Detection
    Ezeme, Okwudili M.
    Mahmoud, Qusay H.
    Azim, Akramul
    IEEE ACCESS, 2020, 8 : 177667 - 177681